(Ⅰ)∵△ABC中,2acosA=bcosC+ccosB,
∴由正弦定理
=a sinA
=b sinB
=2R得:a=2RsinA,b=2RsinB,c=2RsinC,c sinC
∴2sinAcosA=sinBcosC+sinCcosB,
即sin2A=sin(B+C)=sin(π-A)=sinA,
∴2sinAcosA-sinA=0,
∴sinA(2cosA-1)=0,而sinA≠0,
∴cosA=
,又A∈(0,π)1 2
∴A=
…7分π 3
(Ⅱ)由(Ⅰ)知C=
-B,2π 3
故cosB-
sinC
3
=cosB-
sin(
3
-B)2π 3
=cosB-
[sin
3
cosB-cos2π 3
sinB]2π 3
=cosB-
cosB+(-3 2
)sinB
3
2
=-
cosB-1 2