(1)由题意,Sn+1=4an+2,Sn+2=4an+1+2,两式相减,得Sn+2-Sn+1=4(an+1-an)
即an+2=4an+1-4an.
∴an+2-2an+1=2(an+1-2an)
∵bn=an+1-2an
∴bn+1=2bn(n∈N*),
q=
=2,bn+1 bn
又由题设,得1+a2=4+2=6,即a2=5
b1=a2-2a1=3,
∴数列{bn}是首项为3,公比为2的等比数列,其通项公式为bn=3?2n-1.
(2)由题设,可得cn+1-cn=
?an+1 2n+1
=an 2n
=
an+1?2an
2n+1
=bn 2n+1
=3?2n?1
2n+1
3 4
数列{cn}是公差为
的等差数列.3 4
又 c1=
=a1 2
1 2
∴cn=
n?3 4
1 4
(3)∵cn=
n?3 4
,∴an=1 4
n×2n?3 4
×2n,1 4
an-1=2n?1(
n?1)∴Sn=a1+a2+…+an=4×2n?1(3 4
n?1)+2=(3n-4)2n-1+2.3 4