设数列{an}的前n项和为Sn,且a1=1,Sn+1=4an+2(n∈N*),(1)设bn=an+1-2an,求证:数列{bn}是等比数列

2025-01-20 22:50:22
推荐回答(1个)
回答1:

(1)由题意,Sn+1=4an+2,Sn+2=4an+1+2,两式相减,得Sn+2-Sn+1=4(an+1-an
即an+2=4an+1-4an
∴an+2-2an+1=2(an+1-2an
∵bn=an+1-2an
∴bn+1=2bn(n∈N*),
q=

bn+1
bn
=2,
又由题设,得1+a2=4+2=6,即a2=5
b1=a2-2a1=3,
∴数列{bn}是首项为3,公比为2的等比数列,其通项公式为bn=3?2n-1
(2)由题设,可得cn+1-cn=
an+1
2n+1
?
an
2n
=
an+1?2an
2n+1
=
bn
2n+1
=
3?2n?1
2n+1
=
3
4

数列{cn}是公差为
3
4
的等差数列.
又 c1=
a1
2
=
1
2

∴cn=
3
4
n?
1
4

(3)∵cn=
3
4
n?
1
4
,∴an=
3
4
2n?
1
4
×2n

an-1=2n?1(
3
4
n?1)
∴Sn=a1+a2+…+an=4×2n?1(
3
4
n?1)+2
=(3n-4)2n-1+2.