(Ⅰ)解:∵4Sn=an?an+1,n∈N* ①,
∴4a1=a1?a2,
又a1=2,
∴a2=4.
当n≥2时,4Sn-1=an-1?an ②,
①-②得:4an=an?an+1-an-1?an,
由题意知an≠0,
∴an+1-an-1=4,
当n=2k+1,k∈N*时,a2k+2-a2k=4,
即a2,a4,…,a2k是首项为4,公差为4的等差数列,
∴a2k=4+4(k-1)=4k=2×2k;
当n=2k,k∈N*时,a2k+1-a2k-1=4,
即a1,a3,…,a2k-1是首项为2,公差为4的等差数列,
∴a2k-1=2+4(k-1)=4k-2=2×(2k-1).
综上可知,an=2n,n∈N*;
(Ⅱ)证明:∵
=1 an2
>1 4n2
=1 4n(n+1)
(1 4
?1 n
),1 n+1
∴Tn=
+1 a12
+…+1 a22
>1 an2
(1?1 4
+1 2
?1 2
+…+1 3
?1 n
)1 n+1
=
(1?1 4
)=1 n+1
.n 4n+4
又∵
=1 an2
<1 4n2
=1 4n2?1
=1 (2n?1)(2n+1)
(1 2
?1 2n?1
)1 2n+1
∴Tn=
1
a12