关于对弧长的曲线积分的一个公式的证明?

2025-01-21 01:05:52
推荐回答(1个)
回答1:

事实上这种证明过程无需掌握.
曲线积分中的ds表示的是弧长元素,也就是弧微分,在上册定积分的应用一章中,利用定积分计算曲线弧长时,得到公式:ds=√[(dx)^2+(dy)^2],当曲线方程是直角坐标方程、参数方程、极坐标方程时,ds有不同的表达式,根据这些不同的表达式,确定出相应的积分上下限即可.
当曲线方程是参数x=ф(t)),y=φ(t)时,ds=√[(ф'(t))^2+(φ'(t))^2]dt