高数,对弧长的曲线积分的计算法,公式是如何得到的?

2025-01-20 21:49:32
推荐回答(2个)
回答1:

注:ds与dx,dy是勾股关系:即dx,dy是两个直角边,ds是弧的微分,把此微弧看做直线段

故ds=√(dx²+dy²);然后将根号里的两项都除以dt²,再在根号外乘以dt就等于没乘没除了,公

式就是这么来的。

回答2:

这里就相当于把dz提取了出来
显然弧长就是d√(x²+y²+z²)
那么把dz提取出来
得到dz*√[1+(dx/dz)²+(dy/dz)²]
即√(1+x'z²+y'z²) dz