在曲面∑:(x2y+y2z+z2x)2+(x-y+z)=0上的点(0,0,0)处的切平面π内求一点P,使P到(2,1,2)和(

2025-01-20 03:43:04
推荐回答(1个)
回答1:

曲面∑在点(0,0,0)处的法向量为

n
={2(x2y+y2z+z2x)(2xy+z2)+1,2(x2y+y2z+z2x)(2yz+x2)-1,-1}|(0,0,0)={1,-1,1}
∴切平面方程为(x-0)-(y-0)+(z-0)=0,即x-y+z=0
假设所求点的坐标P(x,y,z),则
d2=F(x,y,z)=(x-2)2+(y-1)2+(z-2)2+(x+3)2+(y-1)2+(z+2)2
构造拉格朗日函数:
L(x,y,z;λ)=F(x,y,z)+λ[(x2y+y2z+z2x)2+(x-y+z)]
Lx=2(x-2)+2(x+3)+λ[2(x2y+y2z+z2x)(2xy+z2)+1]=0
Fy=4(y-1)+λ[2(x2y+y2z+z2x)(x2+2yz)-1]=0
Fz=2(z-2)+2(z+2)+λ[2(x2y+y2z+z2x)(y2+2xz)+1]=0

解得x=0,y=
1
2
,z=
1
2
是唯一可疑的极值点,而由题意知,一定有最小值点
故所求点即为(0,
1
2
1
2
)