曲面∑在点(0,0,0)处的法向量为
={2(x2y+y2z+z2x)(2xy+z2)+1,2(x2y+y2z+z2x)(2yz+x2)-1,-1}|(0,0,0)={1,-1,1}n
∴切平面方程为(x-0)-(y-0)+(z-0)=0,即x-y+z=0
假设所求点的坐标P(x,y,z),则
d2=F(x,y,z)=(x-2)2+(y-1)2+(z-2)2+(x+3)2+(y-1)2+(z+2)2
构造拉格朗日函数:
L(x,y,z;λ)=F(x,y,z)+λ[(x2y+y2z+z2x)2+(x-y+z)]
令
Lx=2(x-2)+2(x+3)+λ[2(x2y+y2z+z2x)(2xy+z2)+1]=0
Fy=4(y-1)+λ[2(x2y+y2z+z2x)(x2+2yz)-1]=0
Fz=2(z-2)+2(z+2)+λ[2(x2y+y2z+z2x)(y2+2xz)+1]=0
解得x=0,y=
,z=1 2
是唯一可疑的极值点,而由题意知,一定有最小值点1 2
故所求点即为(0,
,1 2
).1 2