解: 把a1 = s1,代入已知Sn=2an-n
a1 = 2a1 - 1 ,得a1 = 1
当n>1时
an = Sn-S(n-1) = 2an-n -[2a(n-1)-(n-1)] = 2an - 2a(n-1)-1
an = 2a(n-1)+1,两边都加1
(an)+1 = 2[a(n-1)+1],
数列{an+1}是首项为2(因为是a1+1),公比为2的等比数列
an+1 = 2*2^(n-1) = 2^n
an的通项为2^(n-1)
即 : an=2^(n-1)
由Sn=2an-n知当n=1时a1=2a1-1,a1=1当n>=2则an=Sn-S(n-1)=(2an-n)-2an(n-1)+(n-1)整理得an+1=2[a(n-1)+1]即数列{an+1}是首项为a1+1=2,公比为2得等比数列,所以an+1=2的n次方,an=2的n次方-1当n=1时a1=2-1=1也成立,即...多谢采纳.....!