已知数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*),求数列{an}的通项公式.

2025-01-20 20:01:25
推荐回答(2个)
回答1:

解: 把a1 = s1,代入已知Sn=2an-n
   a1 = 2a1 - 1 ,得a1 = 1
   当n>1时
   an = Sn-S(n-1) = 2an-n -[2a(n-1)-(n-1)] = 2an - 2a(n-1)-1
   an = 2a(n-1)+1,两边都加1
   (an)+1 = 2[a(n-1)+1],
   数列{an+1}是首项为2(因为是a1+1),公比为2的等比数列
   an+1 = 2*2^(n-1) = 2^n
   an的通项为2^(n-1)
即 : an=2^(n-1)

回答2:

由Sn=2an-n知当n=1时a1=2a1-1,a1=1当n>=2则an=Sn-S(n-1)=(2an-n)-2an(n-1)+(n-1)整理得an+1=2[a(n-1)+1]即数列{an+1}是首项为a1+1=2,公比为2得等比数列,所以an+1=2的n次方,an=2的n次方-1当n=1时a1=2-1=1也成立,即...多谢采纳.....!