特征方程r²-2r+1=0
(r-1)²=0
r1=r2=1
微分方程的通解为y=(C₁x+C₂)·eˣ一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程。
扩展资料:
微分方程的解
1、一阶线性常微分方程的解
对于一阶线性常微分方程y'+p(x)y+q(x)=0,可知其通解为y=C(x)*e^(-∫p(x)dx)。然后将这个通解代回到原式中,即可求出C(x)的值。
2、二阶常系数齐次常微分方程的解
对于二阶常系数齐次常微分方程,常用方法是求出其特征方程的解。
对于二阶常系数齐次常微分方程y''+py'+qy=0,可求得其通解为y=c1y1+c2y2。
然后可通过其特征方程r^2+pr+q=0来求解二阶常系数齐次常微分方程的通解。
(1)当r1=r2,则有y=(C1+C2*x)e^(rx),
(2)当r1≠r2,则有y=C1*e^(r1x)+C2*x*e^(r2x)
(3)在共轭复数根的情况下,y=e^(αx)*(C1*cos(βx)+C2*sin(βx))
特征方程r²-2r+1=0
(r-1)²=0
r1=r2=1
微分方程的通解为y=(C₁x+C₂)·eˣ
如下