dln√(x²+y²)=darctan(y/x)
d(x²+y²)/[2(x²+y²)]=d(y/x)/[1+(y/x)²]
(xdx+ydy)/(x²+y²)=[(xdy-ydx)/x²]/[1+(y/x)²]
xdx+ydy=xdy-ydx
dy/dx=(x+y)/(x-y)
令F(x, y)=ln√(x²+y²)-arctan(y/x)
Fx=2x. 1/(x²+y²)+y/x²·
1/(1+x²/y²)=(2x+y)/(x²+y²)
Fy=2y. 1/(x²+y²)-1/x·
1/(1+x²/y²)=(2y-x)/(x²+y²)
dy/dx=-Fx/Fy=2x+y)/(x-2y)