1/a+1/b+1/c =(a+b+c)/a+(a+b+c)/b+(a+b+c)/c =1+(b+c)/a+1(a+c)/b+1(a+b)/c =3+b/c+c/b+a/c+c/a+a/b+b/a (由于b/a+a/b>=2,c/a+a/c>=2,c/b+b/c>=2) >=3+2+2+2 =9