证明:∵a+b+c=1
∴1/a+1/b+1/c=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=1+b/a+c/a+a/b+1+c/b+a/c+b/c+1
=(b/a+a/b)+(c/a+a/c)+(b/c+c/b)+3
≥2+2+2+3=9
∴1/a+1/b+1/c≥9. 证毕!
利用“1的替换”及均值不等式,解法如下:
1/a+1/b+1/c
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=1+b/a+c/a+a/b+1+c/b+a/c+b/c+1
=b/a+b/a+c/a+a/c+c/b+c/b+3
>=2+2+2+3=9
利用均值不等式,当且仅当1/a=1/b=1/c,即a=b=c=1/3时取等号;
证明:由题设及“柯西不等式”可得:1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)≥(1+1+1)²=9.等号仅当a=b=c=1/3时取得。∴1/a+1/b+1/c≥9.
1/a+1/b+1/
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=3+(b/a+a/b)+(c/a+a/c)+(b/c+c/b)
>=3+2+2+2=9
此时a=b=c=1/3