已知a>0,B>0,C>0且a+b+c=1求证1⼀a+1⼀b+1⼀C>=9

2025-01-21 01:51:43
推荐回答(4个)
回答1:

证明:∵a+b+c=1
∴1/a+1/b+1/c=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=1+b/a+c/a+a/b+1+c/b+a/c+b/c+1
=(b/a+a/b)+(c/a+a/c)+(b/c+c/b)+3
≥2+2+2+3=9
∴1/a+1/b+1/c≥9. 证毕!

回答2:

利用“1的替换”及均值不等式,解法如下:
1/a+1/b+1/c
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=1+b/a+c/a+a/b+1+c/b+a/c+b/c+1
=b/a+b/a+c/a+a/c+c/b+c/b+3
>=2+2+2+3=9
利用均值不等式,当且仅当1/a=1/b=1/c,即a=b=c=1/3时取等号;

回答3:

证明:由题设及“柯西不等式”可得:1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)≥(1+1+1)²=9.等号仅当a=b=c=1/3时取得。∴1/a+1/b+1/c≥9.

回答4:

1/a+1/b+1/
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=3+(b/a+a/b)+(c/a+a/c)+(b/c+c/b)
>=3+2+2+2=9
此时a=b=c=1/3