留数定理计算实积分

2025-01-18 19:07:02
推荐回答(2个)
回答1:

∵在圆丨z丨=4内,f(z)=1/[(z+2)(z+3)]有z=-2、z=-3两个一阶极点,

∴原式=2πi{Res[f(z),-2]+Res[f(z),-3]}。另一方面,Res[f(z),-2]=1/(z+3)丨(z=-2)=1,Res[f(z),-3]=1/(z+2)丨(z=-3)=-1。从而,原式=0。

扩展资料:

Res(f, ak)表示f在点ak的留数,I(γ, ak)表示γ关于点ak的卷绕数。卷绕数是一个整数,它描述了曲线γ绕过点ak的次数。如果γ依逆时针方向绕着ak移动,卷绕数就是一个正数,如果γ根本不绕过ak,卷绕数就是零。

在计算柯西分布的特征函数时会出现,用初等的微积分是不可能把它计算出来的。我们把这个积分表示成一个路径积分的极限,积分路径为沿着实直线从−a到a,然后再依逆时针方向沿着以0为中心的半圆从a到−a。取a为大于1,使得虚数单位i包围在曲线里面。

参考资料来源:百度百科-留数定理

回答2:

如图所示:

单极点时用这个公式很方便。