用均值不等式证明1加n分之一的n次方小于1加n加1分之一的n加1次方

2025-01-19 08:21:58
推荐回答(1个)
回答1:

[(1+1/n)·(1+1/n)·……·(1+1/n)·1]^[1/(n+1)]<[(1+1/n)+(1+1/n)+……+(1+1/n)+1]/(n+1)
=(n+2)/(n+1)
=1+1/(n+1),
即(1+1/n)^[n/(n+1)]<1+1/(n+1)
∴(1+1/n)^n<[1+1/(n+1)]^(n+1).