数列{an} 满足a1=1,a2=2,an+2=(1-13cos2nπ2)an+2sin2nπ2,n=1,2,3…(1)求a3,a4及数列{an}的通

2025-01-20 15:44:24
推荐回答(1个)
回答1:

(1)a3=(1?

1
3
cos2
π
2
)a1+2sin2
π
2
a1+2=1+2=3
a4=(1?
1
3
cos2
2
)a2+2sin2
2
=(1?
1
3
)a2
=
2
3
× 2=
4
3

一般地,
a2n+1=(1?
1
3
cos2
(2n?1)π
2
)a2n?1+2sin2
(2n?1)π
2
=a2n-1+2
即a2n+1-a2n-1=2
即数列{a2n-1}是以a1=1,公差为2的等差数列.∴a2n-1=2n-1
a2n+2=(1?
1
3
cos2
2nπ
2
)a2n+2sin2
2nπ
2
=
2
3
a2n
即数列{a2n}是首项为a2=2,公比为
2
3
的等比数列
a2na2(
2
3
)
n?1
=2(
2
3
)
n?1

综上可得an
n        n=2m?1,m是正整数
2(
2
3
)
n?2
2
        n=2m m是正整数

(2)S2n=a1+a2+…+a2n-1+a2n=(a1+a3+…+a2n-1)+(a2+a4+…a2n
=[1+3+…+(2n-1)]+[2+
4
3
+…2(
2
3
)
n?1
]
=n2+6?6?(
2
3
)
n