在△ABC中,角A、B、C、所对应的边分别为a、b、c、且满足(2c-a)CosB=bcosA。

2025-01-21 15:45:05
推荐回答(2个)
回答1:

解:由正弦定理有:a=2RsinA b=2RsinB c=2RsinC 已知: (2c-a)CosB=bcosA,有: 2R(2sinC-sinA)cosB=2RsinBcosA (2sinC-sinA)cosB=sinBcosA 2sinCcosB=sin(A+B) 2sinCcosB=sinC sinC<>0有: 2cosB=1 cosB=1/2 B=60°

回答2:

(2c-a)CosB=bcosA (2sinC-sinA)cosB=sinBcosA 2sinCcosB-sinAcosB=sinBcosA 2sinCcosB=sinAcosB+cosAsinB 2sinCcosB=sin(A+B) 2sinCcosB=sinC cosB=1/2 角B=60°
麻烦采纳,谢谢!