(1)∵(2c-b)cosA=acosB,
∴由正弦定理可得(2sinA-sinB)cosA=sinAcosB,
变形可得2sinCcosA=sinBcosA+sinAcosB=sin(A+B)=sinC,
∵C为三角形的内角,sinC≠0,∴cosA=
,A=1 2
;π 3
(2)由余弦定理可得a2=b2+c2-2bccosA,
代入数据可得16=b2+c2-bc≥2bdc-bc,∴bc≤16
当且仅当b=c时取等号,
∴△ABC的面积S=
bcsinA=1 2
bc≤4
3
4
,
3
当且仅当b=c时取等号,
∴△ABC的面积的最大值为4
3