x的三次方+y的三次方=z的三次方有无整数解?

证明全部过程
2025-01-19 19:26:06
推荐回答(1个)
回答1:

x的三次方+y的三次方=z的三次方有无整数解

没有,这是费马大定律的基本理论

高于 3 次方,不可能有整数解

费马方程X^n+Y^n=Z^n整数解的增元求解法
庄 严 庄宏飞
(辽阳铁路器材厂 111000)
【 摘要】对费马方程x^n+y^n=z^n整数解关系的证明,多年来在数学界一直颇多争议。本文利用平面几何方法,全面分析了直角三角形边长a^2+b^2=c^2整数解的存在条件,提出对多元代数式应用增元求值。本文给出的直角三角型边长a^2+b^2=c^2整数解的“定a计算法则”;“增比计算法则”;“定差公式法则”;“a值奇偶数列法则”;是平方整数解的代数条件和实践方法;本文提出建立了一元代数式的绝对方幂式与绝对非方幂式概念;本文利用同方幂数增比性质,利用整数方幂数增项差公式性质,把费马方程x^n+y^n=z^n原本三元高次不定方程的整数解判定问题,巧妙地化为了一元定解方程问题。
关键词:增元求解法 绝对方幂式绝对非方幂式 相邻整数方幂数增项差公式
引言:1621年,法国数学家费马(Fermat)在读看古希腊数学家丢番图(Diophantna)著写的算术学一书时,针对书中提到的直角三角形三边整数关系,提出了方程x^n+y^n=z^n在n=2时有无穷多组整数解,在n>2时永远没有整数解的观点。并声称自己当时进行了绝妙的证明。这就是被后世人称为费马大定理的旷世难题。时至今日,此问题的解答仍繁难冗长,纷争不断,令人莫衷一是。
本文利用直角三角形、正方形的边长与面积的相互关系,建立了费马方程平方整数解新的直观简洁的理论与实践方法,本文利用同方幂数增比定理,对费马方程x^n+y^n=z^n在指数n>2时的整数解关系进行了分析论证,用代数方法再现了费马当年的绝妙证明。
定义1.费马方程
人们习惯上称x^n+y^n=z^n关系为费马方程,它的深层意义是指:在指数n值取定后,其x、y、z均为整数。
在直角三角形边长中,经常得到a、b、c均为整数关系,例如直角三角形 3 、4、 5 ,这时由勾股弦定理可以得到3^2+4^2=5^2,所以在方次数为2时,费马方程与勾股弦定理同阶。当指数大于2时,费马方程整数解之研究,从欧拉到狄里克莱,已经成为很大的一门数学分支.
定义2.增元求解法
在多元代数式的求值计算中引入原计算项元以外的未知数项元加入,使其构成等式关系并参与求值运算。我们把利用增加未知数项元来实现对多元代数式求值的方法,叫增元求解法。
利用增元求解法进行多元代数式求值,有时能把非常复杂的问题变得极其简单。
下面,我们将利用增元求解法来实现对直角三角形三边a^2+b^2=c^2整数解关系的求值。
一,直角三角形边长a^2+b^2=c^2整数解的“定a计算法则”
定理1.如a、b、c分别是直角三角形的三边,Q是增元项,且Q≥1,满足条件:
a≥3
{ b=(a^2-Q^2)÷2Q
c= Q+b
则此时,a^2+b^2=c^2是整数解;
证:在正方形面积关系中,由边长为a得到面积为a^2,若(a^2-Q^2)÷2Q=b(其中Q为增元项,且b、Q是整数),则可把面积a^2分解为a^2=Q^2+Qb+Qb,把分解关系按下列关系重新组合后可得到图形:
Q2 Qb
其缺口刚好是一个边长为b的正方形。补足缺口面积b^2后可得到一个边长
Qb

为Q+b的正方形,现取Q+b=c,根据直角三角形边长关系的勾股弦定理a^2+b^2=c^2条件可知,此时的a、b、c是直角三角形的三个整数边长。
故定理1得证
应用例子:
例1. 利用定a计算法则求直角三角形a边为15时的边长平方整数解?
解:取 应用例子:a为15,选增元项Q为1,根据定a计算法则得到:
a= 15
{ b=(a^- Q^2)÷2Q=(15^2-1^2)÷2 =112
c=Q+b=1+112=113
所以得到平方整数解15^2+112^2=113^2
再取a为15,选增元项Q为3,根据定a计算法则得到:
a= 15
{ b=(a^2-Q^2)÷2Q=(15^2-3^2)÷6=36
c=Q+b=3+36=39
所以得到平方整数解15^2+36^2=39^2
定a计算法则,当取a=3、4、5、6、7 … 时,通过Q的不同取值,将函盖全部平方整数解。
二,直角三角形边长a^2+b^2=c^2整数解“增比计算法则”
定理2.如a^2+b^2=c^2 是直角三角形边长的一组整数解,则有(an)^2+(bn)^2 =(cn)^2(其中n=1、2、3…)都是整数解。
证:由勾股弦定理,凡a^2+b^2=c^2是整数解必得到一个边长都为整数的直角三角形 a c ,根据平面线段等比放大的原理,三角形等比放大得到 2a 2c;
b 2b

3a 3c;4a 4c;… 由a、b、c为整数条件可知,2a、2b、2c;
3b 4b

3a、3b、3c;4a、4b、4c… na、nb、nc都是整数。
故定理2得证

应用例子:
例2.证明303^2+404^2=505^2是整数解?
解;由直角三角形3 5 得到3^2+4^2=5^2是整数解,根据增比计
4
算法则,以直角三角形 3×101 5×101 关系为边长时,必有
4×101
303^2+404^2=505^2是整数解。
三,直角三角形边长a^2+b^2=c^2整数解“定差公式法则”
3a + 2c + n = a1
(这里n=b-a之差,n=1、2、3…)
定理3.若直角三角形a^2+^b2=c^2是满足b-a=n关系的整数解,那么,利用以上3a+2c+ n = a1公式连求得到的a1、a2、a3…ai 所组成的平方数组ai^2+bi^2=ci^2都是具有b-a=n之定差关系的整数解。
证:取n为1,由直角三角形三边3、4、5得到3^2+4^2=5^2,这里n=b-a=4-3=1,根据 3a + 2c + 1= a1定差公式法则有:
a1=3×3+2×5+1=20 这时得到
20^2+21^2=29^2 继续利用公式计算得到:
a2=3×20+2×29+1=119 这时得到
119^2+120^2=169^2 继续利用公式计算得到
a3=3×119+2×169+1=696 这时得到
696^2+697^2=985^2

故定差为1关系成立
现取n为7,我们有直角三角形21^2+28^2=35^2,这里n=28-21=7,根据 3a + 2c + 7 = a1定差公式法则有:
a1=3×21+2×35+7=140 这时得到
140^2+147^2=203^2 继续利用公式计算得到:
a2=3×140+2×203+7=833 这时得到
833^2+840^2=1183^2 继续利用公式计算得到:
a3=3×833+2×1183+7=4872 这时得到
4872^2+4879^2=6895^2

故定差为7关系成立
再取n为129,我们有直角三角形387^2+516^2=645^2,这里n=516-387=129,根据 3a + 2c + 129= a1定差公式法则有:
a1=3×387+2×645+129=2580 这时得到
2580^2+2709^2=3741^2 继续利用公式计算得到:
a2=3×2580+2×3741+129=15351 这时得到
15351^2+15480^2=21801^2 继续利用公式计算得到:
a3=3×15351+2×21801+129=89784 这时得到
89784^2+89913^2=127065^2

故定差为129关系成立
故定差n计算法则成立
故定理3得证
四,平方整数解a^2+^b2=c^2的a值奇偶数列法则:
定理4. 如a^2+^b2=c^2是直角三角形的三个整数边长,则必有如下a值的奇数列、偶数列关系成立;
(一) 奇数列a:
若a表为2n+1型奇数(n=1、2、3 …), 则a为奇数列平方整数解的关系是:
a=2n+1
{ c=n^2+(n+1)^2
b=c-1
证:由本式条件分别取n=1、2、3 … 时得到:
3^2+4^2=5^2
5^2+12^2=13^2
7^2+24^2=25^2
9^2+40^2=41^2
11^2+60^2=61^2
13^2+84^2=85^2

故得到奇数列a关系成立
(二)偶数列a:
若a表为2n+2型偶数(n=1、2、3 …), 则a为偶数列平方整数解的关系是:
a=2n+2
{ c=1+(n+1)^2
b=c-2
证:由本式条件分别取n=1、2、3 … 时得到:
4^2+3^2=5^2
6^2+8^2=10^2
8^2+15^2=17^2
10^2+24^2=26^2
12^2+35^2=37^2
14^2+48^2=50^2

故得到偶数列a关系成立
故定理4关系成立

由此得到,在直角三角形a、b、c三边中:
b-a之差可为1、2、3…
a-b之差可为1、2、3…
c-a之差可为1、2、3…
c-b之差可为1、2、3…
定差平方整数解有无穷多种;
每种定差平方整数解有无穷多个。

以上,我们给出了平方整数解的代数条件和实践方法。我们同样能够用代数方法证明,费马方程x^n+y^n=z^n在指数n>2时没有整数解。证明如下:
我们首先证明,增比计算法则在任意方次幂时都成立。
定理5,若a,b,c都是大于0的不同整数,m是大于1的整数,如有a^m+b^m=c^m+d^m+e^m同方幂关系成立,则a,b,c,d,e增比后,同方幂关系仍成立。
证:在定理原式 a^m+b^m=c^m+d^m+e^m中,取增比为n,n>1,
得到 : (n a)^m+(nb)^m=(nc)^m+(nd)^m+(ne)^m
原式化为 : n^m(a^m+b^m)=n^m(c^m+d^m+e^m)
两边消掉 n^m后得到原式。
所以,同方幂数和差式之间存在增比计算法则,增比后仍是同方幂数。
故定理5得证
定理6,若a,b,c是不同整数且有a^m+b=c^m关系成立,其中b>1,b不是a,c的同方幂数,当a,b,c同比增大后,b仍然不是a,c的同方幂数。
证:取定理原式a^m+b=c^m
取增比为n,n>1,得到:(na)^m+n^mb=(nc)^m
原式化为: n^m(a^m+b)=n^mc^m
两边消掉n^m后得到原式。
由于b不能化为a,c的同方幂数,所以n^mb也不能化为a,c的同方幂数。
所以,同方幂数和差式间含有的不是同方幂数的数项在共同增比后,等式关系仍然成立。其中的同方幂数数项在增比后仍然是同方幂数,不是同方幂数的数项在增比后仍然是非同方幂数。
故定理6得证
一元代数式的绝对方幂与绝对非方幂性质
定义3,绝对某次方幂式
在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都是某次完全方幂数,我们称这时的代数式为绝对某次方幂式。例如:n^2+2n+1,n^2+4n+4,
n^2+6n+9,……都是绝对2次方幂式;而n^3+3n^2+3n+1,n^3+6n^2+12n+8,……都是绝对3次方幂式。
一元绝对某次方幂式的一般形式为(n+b)^m(m>1,b为常数项)的展开项。
定义4,绝对非某次方幂式
在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都不是某次完全方幂数,我们称这时的代数式为绝对非某次方幂式。例如:n^2+1,n^2+2,n^2+2n,…… 都是绝对非2次方幂式;而n^3+1,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,n^3+6n^2+8……都是绝对非3次方幂式。
当一元代数式的项数很少时,我们很容易确定代数式是否绝对非某次方幂式,例如n^2+n是绝对非2次方幂式,n^7+n是绝对非7次方幂式,但当代数式的项数很多时,得到绝对非某次方幂式的条件将越来越苛刻。
一元绝对非某次方幂式的一般形式为:在(n+b)^m(m>2,b为常数项)的展开项中减除其中某一项。
推理:不是绝对m次方幂式和绝对非m次方幂式的方幂代数式必定在未知数取某一值时得出一个完全m次方数。例如:3n^2+4n+1不是绝对非3次方幂式,取n=1时有3n^2+4n+1=8=2^3,3n^2+3n+1不是绝对非2次方幂式,当n=7时,3n^2+3n+1=169=13^2;
推理:不含方幂项的一元代数式对任何方幂没有唯一性。2n+1=9=3^2,2n+1=49=7^2 …… 4n+4=64=8^2,4n+4=256=16^2 ……2n+1=27=3^3,2n+1=125=5^3 ……
证明:一元代数式存在m次绝对非方幂式;
在一元代数式中,未知数的不同取值,代数式将得到不同的计算结果。未知数与代式计算结果间的对应关系是唯一的,是等式可逆的,是纯粹的定解关系。这就是一元代数式的代数公理。即可由代入未知数值的办法对代数式求值,又可在给定代数式数值的条件下反过来对未知数求值。利用一元代数式的这些性质,我们可实现整数的奇偶分类、余数分类和方幂分类。
当常数项为1时,完全立方数一元代数表达式的4项式的固定形式是(n+1)^3=n^3+3n^2+3n+1,它一共由包括2个方幂项在内的4个单项项元组成,对这个代数式中3个未知数项中任意一项的改动和缺失,代数式都无法得出完全立方数。在保留常数项的前提下,我们锁定其中的任意3项,则可得到必定含有方幂项的3个不同的一元代数式,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,对这3个代数式来说,使代数式的值成为立方数只能有唯一一个解,即补上缺失的第4项值,而且这个缺失项不取不行,取其它项值也不行。因为这些代数式与原立方代数式形成了固定的单项定差代数关系,这种代数关系的存在与未知数取值无关。这种关系是:
(n+1)^3-3n= n^3+3n^2+1
(n+1)^3-3n^2= n^3+3n+1
(n+1)^3-n^3=3n^2+3n+1
所以得到:当取n=1、2、3、4、5 …
n^3+3n^2+1≠(n+1)^3
n^3+3n+1≠(n+1)^3
3n2+3n+1≠(n+1)^^3
即这3个代数式的值都不能等于(n+1)^3形完全立方数。
当取n=1、2、3、4、5 …时,(n+1)^3=n^3+3n^2+3n+1的值是从2开始的全体整数的立方,而 小于2的整数只有1,1^3=1,当取n=1时,
n^3+3n^2+1=5≠1
n^3+3n+1=5≠1
3n^2+3n+1=7≠1
所以得到:当取n=1、2、3、4、5 …时,代数式n^3+3n^2+1,n^3+3n+1,3n^2+3n+1的值不等于全体整数的立方数。这些代数式是3次绝对非方幂式。
由以上方法我们能够证明一元代数式:n^4+4n^3+6n^2+1,n^4+4n^3+4n+1,n^4+6n^2+4n+1,4n^3+6n^2+4n+1,在取n=1、2、3、4、5 …时的值永远不是完全4次方数。这些代数式是4次绝对非方幂式。
能够证明5次方以上的一元代数式(n+1)^m的展开项在保留常数项的前提下,锁定其中的任意m项后,可得到m个不同的一元代数式,这m个不同的一元代数式在取n=1、2、3、4、5 …时的值永远不是完全m次方数。这些代数式是m次绝对非方幂式。

现在我们用代数方法给出相邻两整数n与n+1的方幂数增项差公式;
2次方时有:(n+1)^2-n^2
=n^2+2n+1-n^2
=2n+1
所以,2次方相邻整数的平方数的增项差公式为2n+1。
由于2n+1不含有方幂关系,而所有奇数的幂方都可表为2n+1,所以,当2n+1为完全平方数时,必然存在n^2+(2√2n+1)^2=(n+1)^2即z-x=1之平方整数解关系,应用增比计算法则,我们即可得到z-x=2,z-x=3,z-x=4,z-x=5……之平方整数解关系。但z-x>1的xyz互素的平方整数解不能由增比法则得出,求得这些平方整数解的方法是:
由(n+2)^2-n^2=4n+4为完全平方数时得出全部z-x=2的平方整数解后增比;
由(n+3)^2-n^2=6n+9为完全平方数时得出全部z-x=3的平方整数解后增比;
由(n+4)^2-n^2=8n+16为完全平方数时得出全部z-x=4的平方整数解后增比;
……
这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,我们可得到整数中全部平方整数解。
所以费马方程x^n+y^n=z^n在指数为2时成立。
同时,由于所有奇数的幂方都可表为2n+1及某些偶数的幂方可表为4n+4,6n+9,8n+16 …… 所以,还必有x^2+y^n=z^2整数解关系成立。
3次方时有:(n+1)^3-n^3
=n^3+3n^2+3n+1-n^3
=3n^2+3n+1
所以,3次方相邻整数的立方数的增项差公式为3n^2+3n+1。
由于3n^2+3n+1是(n+1)^3的缺项公式,它仍然含有幂方关系,是3次绝对非方幂式。所以,n为任何整数时3n^2+3n+1的值都不是完全立方数,因而整数间不存在n^3+(3√3n^2+3n+1 )^3=(n+1)^3即z-x=1之立方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之立方整数解关系。但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些立方费马方程式的方法是:
由(n+2)^3-n^3=6n2+12n+8,所以,n为任何整数它的值都不是完全立方数;
由(n+3)^3-n^3=9n2+27n+27,所以,n为任何整数它的值都不是完全立方数;
由(n+4)^3-n^3=12n2+48n+64,所以,n为任何整数它的值都不是完全立方数;
……
这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程3次方关系经过增比后将覆盖全体整数。
所以费马方程x^n+y^n=z^n在指数为3时无整数解。
4次方时有;(n+1)^4-n^4
=n^4+4n^3+6n^2+4n+1-n^4
=4n^3+6n^2+4n+1
所以,4次方相邻整数的4次方数的增项差公式为4n^3+6n^2+4n+1。
由于4n^3+6n^2+4n+1是(n+1)^4的缺项公式,它仍然含有幂方关系,是4次绝对非方幂式。所以,n为任何整数时4n^3+6n^2+4n+1的值都不是完全4次方数,因而整数间不存在n^4+(4√4n3+6n2+4n+1)^4=(n+1)^4即z-x=1之4次方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之4次方整数解关系。但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些4次方费马方程式的方法是:
由(n+1)^4-n^4=8n3+24n2+32n+16,所以,n为任何整数它的值都不是完全4次方数;
由(n+1)^4-n^4=12n3+54n2+108n+81,所以,n为任何整数它的值都不是完全4次方数;
由(n+1)^4-n^4=16n3+96n2+256n+256,所以,n为任何整数它的值都不是完全4次方数;
……
这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程4次方关系经过增比后将覆盖全体整数。
所以费马方程x^n+y^n=z^n在指数为4时无整数解。
m次方时,相邻整数的方幂数的增项差公式为:
( n+1)^m-n^m
=n^m+mn^m-1+…+…+mn+1-n^m
=mn^m-1+…+…+mn+1
所以,m次方相邻整数的m次方数的增项差公式为mn^m-1+…+…+mn+1。
由于mn^m-1+…+…+mn+1是(n+1)^m的缺项公式,它仍然含有幂方关系,是m次绝对非方幂式。所以,n为任何整数时mn^m-1+…+…+mn+1 的值都不是完全m次方数,因而整数间不存在n^m+(m√mn^m-1+…+…+mn+1)^m =(n+1)^m即z-x=1之m次方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之m次方整数解关系。但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些m次方费马方程式的方法是:
由(n+2)^m-n^m=2mn^m-1+…+…+2^m-1 mn+2^m,所以,n为任何整数它的值都不是完全m次方数;
由(n+3)^m-n^m=3mn^m-1+…+…+3^m-1 mn+3^m,所以,n为任何整数它的值都不是完全m次方数;
由(n+4)^m-n^m=4mn^m-1+…+…+4^m-1 mn+4^m,所以,n为任何整数它的值都不是完全m次方数;
……
这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程m次方关系经过增比后将覆盖全体整数。
所以费马方程x^n+y^n=z^n在指数为m时无整数解。
所以费马方程x^n+y^n=z^n在指数n>2时永远没有整数解。

所以,长达三百多年的费马大定理问题与哥德巴赫猜想问题一样,也是一个初等数
学问题。
回答者: 淡蘫de徊忆 - 见习魔法师 二级 8-5 13:57
查看用户评论(1)>>
评价已经被关闭 目前有 4 个人评价

75% (3) 不好
25% (1)
相关内容
• 费马大定理的证明论文
• 费马大定理的证明?
• 安德鲁 怀尔斯对费马大定理的证明全过程
• 费马大定理的证明方法
• 费马大定理证明哪有(中文)
更多相关问题>>
查看同主题问题:费马大定理 证明
其他回答 共 2 条
只需证 x^4+ y^4 = z^4 和x^p+ y^p = z^p (P为奇质数),都没有整数解
回答者: lshhy - 高级魔法师 六级 8-4 17:14
历史上有许多人,他们在主要从事的工作方面没有取得什么成果,而在平常茶余饭后的闲暇时间里却取得了了不起的成就。费马就是一个典型。在今天,人们提到皮埃尔·德·费马(1601~1665),主要不是因为他是一个政治家或法官,而是因为他是一个出色的业余数学家。费马在数学的许多领域都进行过研究并小有建树,但真正令他名满天下的是被后人称之为“费马大定理”的猜想。
费马大定理的表述很简单:对于正整数,不可能将一个高于2次的幂写成两个同次幂的和。换句话说就是,方程Xn+Yn=Zn,当n>2时,不存在正整数解。在一本书的页边,费马写到:我有一个对这个命题的十分优美的证明,这里空白太小,写不下。
从此包括大数学家欧拉、柯西在内的无数智者都曾为此殚精竭智,虽然每次都能向前迈进一小步,但都未能最终证明费马大定理。300多年来,很多人声称找到了解决这个难题的办法,然而每一次均为人所推翻。从费马大定理本身来说,证明不证明它对数学的发展没有多大意义。但一方面,这是对智慧的挑战;另一方面,数学家们从证明费马大定理的过程中得到了许多意外的收获,一些新的数学分支和方法正是在对它的研究中产生的。因而,费马大定理的证明一直受到人们
的关注。
关于费马大定理也有不少小插曲,德国人保罗·沃尔夫斯凯尔为费马大定理设立专项基金即是其中之一。按照人们的一般说法,沃尔夫斯凯尔因为失恋而试图结束自己的生命。在他认为一切就绪,准备于某日午夜准时开枪自尽前的一段时间里,发现了一篇关于费马大定理的论文。碰巧的是,沃尔夫斯凯尔本人是一个数学爱好者,不知不觉中竟沉湎于论文中,结果错过了原定的自杀时间。之后,沃尔夫斯凯尔放弃了自杀的念头,并在死前留下遗嘱,把一大笔财富作为奖给第一个证明费马大定理的人,有效期到2007年。

美国普林斯顿大学教授安德鲁·怀尔斯经过7年的潜心研究,于1993年公布了他对费马大定理的证明。他的证明在1995年得到确认并最终获得了沃尔夫斯凯尔留下的奖金。
怀尔斯的证明长达一百多页,其中涉及许多最新的数学知识,目前在世界范围内能看懂的人也屈指可数。因此出现了这样的争议:有人认为这不可能是当年费马所想到的证明,应该还有种比这简单的证明未被发现;但也有许多人倾向于认为当年的费马其实毫无发现,或者只是想到了一个错误的方法。
1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现 一种美妙的证法 ,可惜这里空白的地方太小,写不下。”毕竟费马没有写下证明,而他的其他猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。

对得多不同的 n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。

1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人。

1983年, Gerd Faltings 证明了 Mordell conjecture 从而得出当 n > 2 时(n为整数),不存在互质的 a,b,c 使得 an + bn = cn。

1986年,Gerhard Frey 提出了“epsilon 猜想”:若存在 a, b, c 使得an + bn = cn,即费马大定理是错的,则椭圆曲线

y2 = x(x-an)(x + bn)
会是谷山志村猜想的一个反例。Frey 的猜想随即被 Kenneth Ribet 证实。此猜想显示了费马大定理与椭圆曲线及 modular forms 的密切关系。

1995年,怀尔斯和泰勒在一特例范围内证明了谷山志村猜想,Frey 的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。

怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功。他们的证明刊在1995年的Annals of Mathematics之上。

参考资料:http://cgd.best.vwh.net/home/flt/flt08.htm