在三角形ABC中,a、b、c分别是角A、B、C的对边, m =(2b-c,cosC), . n =

2025-01-21 09:34:44
推荐回答(1个)
回答1:

(1)∵
m
=(2b-c,cosC),
.
n
=(a,cosA),且
m
.
n
        
∴(2b-c)cosA=acosC即(2sinB-sinC)cosA-sinAcosC=0(2分)
化简,得2sinBcosA=sinCcosA+sinAcosC=sin(A+C)
∵A+B+C=π,
∴2sinBcosA=sin(π-B)=sinB…(4分)
∵在锐角三角形ABC中,sinB>0
∴两边约去sinB,得cosA=
1
2

结合A是三角形的内角,得A=
π
3
…(6分)
(2)∵锐角三角形ABC中,A=
π
3
,∴
π
6
<B<
π
2
…(7分)
∴y=2sin 2 B+cos(
π
3
-2B)=1-cos2B+
1
2
cos2B+
3
2
sin2B
=1+
3
2
sin2B-
1
2
cos2B=1+sin(2B-
π
6
)…(9分)
π
6
<B<
π
2
,∴
π
6
<2B-
π
6
6

1
2
<sin(2B-
π
6
)≤1,可得
3
2
<y≤2
∴函数y=2sin 2 B+cos(
π
3
-2B)的值域为(
3
2
,2].…(12分)