求微分方程 [x/(1+y)]dx-[y/(1+y)]dy=0满足y(0)=1的特解;解:[x/(1+y)]dx=[y/(1+y)]dy;1+y≠0; 两边同乘以1+y,得 xdx=ydy;积分之得:(1/2)y²=(1/2)x²+(1/2)c即有 y²=x²+c;代入初始条件y(0)=1得 c=1;故满足初始条件的特解为 y²=x²+1;