上下同除以 n,分子极限=e,分母极限=e²,所以原极限=1/e。
lim[(1+n)/(2+n)]^n = lim[(2+n-1)/(2+n)]^n= lim{[1-1/(2+n)]^[-(2+n)]}^[-n/(2+n)]= e^ lim[-n/(2+n)] = e^ lim[-1/(2/n+1)] = 1/e