极限limx->0[(sinx)^2-xsinxcosx]⼀x^4,求解释(问题补充),谢谢了

2025-01-19 23:19:43
推荐回答(4个)
回答1:

(x^2-x*xcosx]/x^4=[x^2(1-cosx)[/x^4=1/2x^4/x^4=1/2

第一步就错了
等价无穷小代换只能用在连乘或连除中

回答2:

等价无穷小量分母明显是x^4, 分子x^2, 那相比还是无穷啊,没有意义,也就是说无穷小量的精确度不够,

罗比大法则是对的

回答3:

lim(x->0)[(sinx)^2-xsinxcosx]/x^4 (0/0)

=lim(x->0) [sin2x - (1/2)( 2xcos2x+sin2x)/ (4x^3)
=lim(x->0) (sin2x- 2xcos2x)/(8x^3) (0/0)
=lim(x->0) [ 2cos2x- 2(-2xsin2x+cos2x)]/ (24x^2)
=lim(x->0) xsin2x/(6x^2) (0/0)
=lim(x->0)( 2xcos2x+sin2x)/(12x) (0/0)
=lim(x->0)(2(-2xsin2x+cos2x)+ 2cos2x)/12
=4/12
=1/3

回答4:

用等价无穷小量算

limx->0[(sinx)^2-xsinxcosx]/x^4

=limsinxcosx﹙tanx-x﹚]/x⁴

=lim﹙tanx-x﹚]/x³

=lim﹙x³/3﹚/x³

=1/3