这是一个复合函数,按照复合函数求导的方法求导就可以了,,如图,希望可以帮助你
f(x)=x.ln[x+ √ (1+x^2) ]
f'(x)
=ln[x+ √ (1+x^2) ] + x . d/dx{ ln[x+ √ (1+x^2) ] }
=ln[x+ √ (1+x^2) ] + x . {1/ln[x+ √ (1+x^2) ] } . d/dx [x+ √ (1+x^2) ]
=ln[x+ √ (1+x^2) ] + x . {1/ln[x+ √ (1+x^2) ] } . [1+ x/√ (1+x^2) ]
=ln[x+ √ (1+x^2) ] + x .[ √ (1+x^2) +x] /{ ln[x+ √ (1+x^2) ] .√ (1+x^2) }
积的导数法则,
f'(x)=ln[x+√(x²+1)]
+x/[x+√(x²+1)] * [1+x/√(x²+1)]
=ln[x+√(x²+1)]+x/√(x²+1)