两边对x求两次导数,1-y'+1/2cosyy'=0;==>y'=1/(1-cosy/2),0-y''+1/2(y'(-siny)+cosyy'')=0 ==>y''=y'siny/(cosy-2)再将y'带入即可。
y的函数表达式隐含在方程中,因此是考查隐函数求导,可以用高数上册的隐函数求导公式,也可以用高数下册中利用偏导数求隐函数的导数公式。
注意事项:
用户需要注意此时碰到Y时,要看成X的复合函数,求导时要用复合函数求导法分层求导。
说明不是所有的隐函数都能显化,否则隐函数求导并不会有太突出的作用,当隐函数不能显化时,根据函数的定义必然纯在一个函数,如果在求其导数,不能通过显化后求导,只能运用隐函数求导法,这样即可解出。
两边对x求两次导数,1-y'+1/2cosyy'=0;==>y'=1/(1-cosy/2),0-y''+1/2(y'(-siny)+cosyy'')=0 ==>y''=y'siny/(cosy-2)再将y'带入即可。
y的函数表达式隐含在方程中,因此是考查隐函数求导,可以用高数上册的隐函数求导公式,也可以用高数下册中利用偏导数求隐函数的导数公式。
扩展资料:
注意事项:
用户需要注意此时碰到Y时,要看成X的复合函数,求导时要用复合函数求导法分层求导。
说明不是所有的隐函数都能显化,否则隐函数求导并不会有太突出的作用,当隐函数不能显化时,根据函数的定义必然纯在一个函数,如果在求其导数,不能通过显化后求导,只能运用隐函数求导法,这样即可解出。
参考资料来源:百度百科-隐函数
简单计算一下即可,答案如图所示