求由方程x-y+1⼀2siny=0所确认的隐函数的二阶导数

2024-12-16 12:26:00
推荐回答(5个)
回答1:

简单计算一下即可,答案如图所示

回答2:

解:
一阶得:2-2y'+cosy*y'=0
二阶得:y''*(cosy-2)-(y')^2*siny=0

回答3:

x-y+1/2siny=0 两边对x求导得
1-y'+1/2cosy*y'=0
y'=2/(2-cosy)
y''=dy'/dx
=(dy'/dy)*(dy/dx)
=[-2/(2-cosy)²]*siny*2/(2-cosy)
=-4siny/(2-cosy)³

回答4:

第二阶导不对
(y')'=(2/(2-cosy))'

=-2/(2-cosy)^2*(2-cosy)'
=2siny*y'/(2-cosy)^2

回答5:

这是对x求导,赞最多的是对的