证明:
(1)当n=1时
左边=4/8+1/2ln2;右边=1。因为ln2<1,所以1/2ln2<1/2故得4/8+1/2ln2<1,显然成立
(2)令n=k时有:(3k+1)/(4k+4)+1/2ln(k+1)<当n=k+1时
上述不等式左边=(3k+4)/(4k+8)+1/2ln(k+2)<(3k+4)/(4k+4)+1/2ln(k+1)<(3k+5)/(4k+4)+1/2ln(k+1)
又因为(3k+5)/(4k+4)+1/2ln(k+1)=(3k+1)/(4k+4)+1/(k+1)+1/2ln(k+1)<1+1/2+1/3+1/4+....+1/k+1/(k+1)
故有:(3k+4)/(4k+8)+1/2ln(k+2)<1+1/2+1/3+1/4+....+1/k+1/(k+1)
故上述不等式得证
证明:①当n=1时,4/8+(ln2)/2=1/2+(ln2)/2<1/2+(lne)/2=1,故结论成立
②假设n=k-1时结论成立,即:(3k-2)/(4k)+1/2ln(k)<1+1/2+1/3+1/4+....1/(k-1)
当n=k时,
因为:(3k+1)/(4k+4)+1/2ln(k+1)-(3k-2)/(4k)-1/2ln(k)
=1/[2(k+1)k]+1/2ln(1+1/k)
=1/2[1/k-/1(1+k)+ln(1+1/k)]
令f(x) = ln(1+x) - x ,x>0
f'(x) = 1/(1+x) -1<0
故f(x)是减函数
f(x) < f(0) =0
即 ln(1+x) < x
即ln(1+1/k) < 1/k
所以1/2[1/k-/1(1+k)+ln(1+1/k)]<1/2[1/k-/1(1+k)+1/k)]<1/k
所以:(3k+1)/(4k+4)+1/2ln(k+1)<1+1/2+1/3+1/4+....1/(k-1)+1/k
∴n=k时也成立
由①②及数学归纳原理得
原命题恒成立
证明:当n=1时4/8+ln2/2=1/2+ln2/2<1,结论成立
设n=k-1时结论成立,即:(3k-2)/(4k)+1/2ln(k)<1+1/2+1/3+1/4+....1/(k-1)
考虑.n=k的情形。
因为:(3k+1)/(4k+4)+1/2ln(k+1)-(3k-2)/(4k)-1/2ln(k)
=1/(2k(k+4))+ln(1+1/k)/2=(1/2k)(1/(k+4)+ln(1+1/k)^k)<1/k(1+lne)/2<1/k
所以:(3k+1)/(4k+4)+1/2ln(k+1)<1+1/2+1/3+1/4+....1/(k-1)+1/k
由归纳法原理,对一切正整数n,有(3n+1)/(4n+4)+1/2ln(n+1)<1+1/2+1/3+1/4+....1/n
证明:(1)当n=1时,1/2+1/2ln2<1成立。
(2)当n>=2时,假设n=k时假设成立即(3k+1)/(4k+4)+1/2ln(k+1)<1+1/2+...1/k,则当n=k+1时,需证(3k+4)/(4k+8)+1/2ln(k+2)<1+1/2+...1/(k+1)
即证1/(k+1)+(3k+1)/(4k+4)+1/2ln(k+1)>(3k+4)/(4k+8)+1/2ln(k+2),
整理的1/(k+1)+1/(k+2)>ln(1+1/(k+1))
构造函数如:令1/(k+1)=x,则构造f(x)=x+x/(x+1)-ln(x+1) (0
因此1/(k+1)+1/(k+2)>ln(1+1/(k+1))成立既得证
综上所述:(3n+1)/(4n+4)+1/2ln(n+1)<1+1/2+1/3+1/4+....1/n
望采纳、、、