已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),(Ⅰ)若bn=ann+1,试证明数列{bn}为

2025-01-20 02:03:12
推荐回答(1个)
回答1:

解答:(Ⅰ)证明:∵nan+1=2(n+1)an+n(n+1),∴

an+1
n+1
2an
n
+1,…(2分)
an+1
n+1
+1=
2an
n
+2=2(
an
n
+1)
,即bn+1=2bn
又b1=2,所以{bn}是以2为首项,2为公比的等比数列.…(6分)
(Ⅱ)解:由(Ⅰ)知bn2n,∴
an
n
+1=2n
,∴an=n(2n?1),…(8分)
S
=1×(2?1)+2×(22?1)+3×(23?1)+…+n(2n?1)
=1×2+2×22+3×23+…+n?2n-(1+2+3+…+n)=1×2+2×22+3×23+…+n?2n?
n(n+1)
2
.…(10分)
Tn=1×2+2×22+3×23+…+n?2n
2Tn=1×22+2×23+3×24+…+n?2n+1
两式相减得:?Tn=2+22+23+…+2n?n?2n+1
2(1?2n)
1?2
?n?2n+1
Tn=2(1?2n)+n?2n+1=(n?1)?2n+1+2.…(12分)
Sn=(n?1)?2n+1+2?
n(n+1)
2
.…(13分)