解答:(Ⅰ)证明:∵nan+1=2(n+1)an+n(n+1),∴
=an+1 n+1
+1,…(2分)2an
n
∴
+1=an+1 n+1
+2=2(2an
n
+1),即bn+1=2bn,an n
又b1=2,所以{bn}是以2为首项,2为公比的等比数列.…(6分)
(Ⅱ)解:由(Ⅰ)知bn=2n,∴
+1=2n,∴an=n(2n?1),…(8分)an n
∴
=1×(2?1)+2×(22?1)+3×(23?1)+…+n(2n?1)=1×2+2×22+3×23+…+n?2n-(1+2+3+…+n)=1×2+2×22+3×23+…+n?2n?
S
.…(10分)n(n+1) 2
令Tn=1×2+2×22+3×23+…+n?2n,
则2Tn=1×22+2×23+3×24+…+n?2n+1,
两式相减得:?Tn=2+22+23+…+2n?n?2n+1=
?n?2n+1,Tn=2(1?2n)+n?2n+1=(n?1)?2n+1+2.…(12分)2(1?2n) 1?2
∴Sn=(n?1)?2n+1+2?
.…(13分)n(n+1) 2