(1)∵数列{an}满足:a1=6,an+1=
an+(n+1)(n+2),n+2 n
∴等式两边同除(n+1)(n+2),得:
=an+1 (n+1)(n+2)
+1,an n(n+1)
又
=3,∴{a1 1×2
}是首项为3、公差为1的等差数列,an n(n+1)
∴dn=
=3+(n-1)=n+2.an n(n+1)
(2)由(1)得an=n(n+1)(n+2),
∴bn=
?2n+1=n?2n+1,an (n+1)(n+2)
∴Tn=1×22+2×23+3×24+…+n×2n+1,①
2Tn=1×23+2×24+3×25+…+n×2n+2,②
①-②,得-Tn=22+23+24+25+…+2n+1-n×2n+2
=
?n×2n+24(1?2n) 1?2
=2n+2-4-n×2n+2 ,
=-4-(n-1)×2n+2,
∴Tn =(n-1)?2n+2+4.