已知数列{an}满足:a1=6,an+1=n+2nan+(n+1)(n+2).(1)若dn=ann(n+1),求数列{dn}的通项公式;(2

2025-01-20 04:44:04
推荐回答(1个)
回答1:

(1)∵数列{an}满足:a1=6,an+1=

n+2
n
an+(n+1)(n+2),
∴等式两边同除(n+1)(n+2),得:
an+1
(n+1)(n+2)
an
n(n+1)
+1

a1
1×2
=3
,∴{
an
n(n+1)
}是首项为3、公差为1的等差数列,
∴dn=
an
n(n+1)
=3+(n-1)=n+2.
(2)由(1)得an=n(n+1)(n+2),
∴bn=
an
(n+1)(n+2)
?2n+1
=n?2n+1
∴Tn=1×22+2×23+3×24+…+n×2n+1,①
2Tn=1×23+2×24+3×25+…+n×2n+2,②
①-②,得-Tn=22+23+24+25+…+2n+1-n×2n+2
=
4(1?2n)
1?2
?n×2n+2

=2n+2-4-n×2n+2 
=-4-(n-1)×2n+2
Tn =(n-1)?2n+2+4.