分析下知道这是一个(0/0)型的
用洛必达法则 lim(x→0)x-sinx/根号下(1-xˆ3)-1
=lim(x→0)(1-cosx)/[(-3x^2)/2倍根号下(1-xˆ3)]
然后把分子用等价无穷小代换
=lim(x→0)(1/2x^2)/[(-3x^2)/2倍根号下(1-xˆ3)]
=lim(x→0)1/(-3/根号下(1-xˆ3))
=-1/3
祝学习进步!
当x->0, √(1-x³) ﹣ 1 ~ ﹣(1/2)x³ 等价无穷小代换
原式 = lim(x->0) (-2) (x-sinx) / x³
= lim(x->0) (-2) (1-cosx) / (3x²) (1-cosx) ~ x²/2
= ﹣1/3
由于是0/0型函数,所以上下分别求导两次可知答案为-1/3.