解法一:原式=∫<-1,1>dx∫
=∫<-1,1>(x²+x-x^4-x^7)dx
=2∫<0,1>(x²-x^4)dx
=2(1/3-1/5)
=4/15;
解法二:原式=∫<0,1>[∫<-√y,0>(x²+3xy²)dx+∫<0,√y>(x²+3xy²)dx]dy
=∫<0,1>[(y^(3/2)/3-3y³/2)+(y^(3/2)/3+3y³/2)]dy
=∫<0,1>[(2/3)y^(3/2)]dy
=(2/3)(2/5)
=4/15。
先积y,再积x
∫∫(x^2+3xy^2)dxdy
=∫[-1-->1]∫[x²-->1](x²+3xy²)dydx
=∫[-1-->1] (x²y+xy³) | [x²-->1] dx
=∫[-1-->1] (x²+x-x⁴-x⁷)dx
=1/3x³+1/2x²-1/5x⁵-1/8x⁸ [-1-->1]
=4/15
是不是3分之5!