解:画出积分区域D如右图,D可用不等式表示为:
(1/y)<=x<=y,1<=y<=2.
这是Y-型区域,因此,有
标准答案,希望采纳!!!
1.,D由x=0,y=0与x^2+y^2=1,画图就看出来了
2.y=x与抛物线y=x^2 交点的时候两个y相等,可以求出x(0,1)
3.2x-y+3=0,x+y-3=0 交点x相等,解出来y=3 所以 1《y《3
解:1。原式=∫<1,2>y²dy∫
=∫<1,2>y²(y-1/y)dy
=∫<1,2>(y³-y)dy
=2^4/4-2²/2-1/4+1/2
=9/4;
2。原式=∫<1,2>x²dx∫<1,x>ydy
=∫<1,2>x²(x²/2-1/2)dx
=1/2∫<1,2>(x^4-x²)dx
=(32/5-8/3-1/5+1/3)/2
=58/15;
3。原式=∫<-1,0>dx∫<-x-1,1+x>(x²+y²)dy+∫<0,1>dx∫
=2/3∫<-1,0>(4x³+6x²+3x+1)dx+2/3∫<0,1>(1-3x+6x²-4x³)dx
=2(1+2+3/2+1+1-3/2+2-1)/3
=4。
∫∫(e^(y/x)dxdy
=∫[0,1/2] dx∫[x^2,x] (e^(y/x)dy
=∫[0,1/2] dx {(xe^(y/x)|[x^2,x]}
=∫[0,1/2] (xe-xe^x) dx
=ex^2/2|[0,1/2] -∫[0,1/2] xe^xdx
=e/8 -∫[0,1/2] xde^x
=e/8 - xe^x|[0,1/2]+∫[0,1/2] e^xdx
=e/8-√e/2 +[√e -1]
=e/8 +√e/2 -1
极坐标系 D:0≤θ≤π/2 , 0 ≤p≤2
∫∫√(1+x²+y²)dxdy = ∫[0,π/2] dθ ∫[0,2] √(1+p²) p dp
= π/2 * (1/3) (1+p²)^(3/2) |[0,2]
= (π/6) * (5√5 -1)