(Ⅰ)∵数列{an}是等差数列,设其首项为a1,公差为d,则an+1=an+d
∴由已知可得:an+d=2an-n+1;
an+d=a1+(n-1)d 即an=n+d-1
又 an=a1+(n-1)d
∴a1=1,d=1 可得:an=n
∴
=1
anan+1
=1 n(n+1)
?1 n
1 n+1
∴Sn=(1?
)+(1 2
?1 2
)+…+(1 3
?1 n
)=1 n+1
n n+1
(Ⅱ)证明:数列{an+2}是等比数列,
则(a2+2)2=(a1+2)(a3+2)
即∴a1=2,a2=4,a3=7,a4=12
于是数列{an+2}的前4项为4,6,9,14,
它显然不是等比数列,
数列{an+2}不可能是等比数列.