已知数列{an}满足an+1=2an-n+1(n∈N*).(Ⅰ)若数列{an}是等差数列,求数列{1anan+1}的前n项和Sn;(

2025-01-20 01:52:46
推荐回答(1个)
回答1:

(Ⅰ)∵数列{an}是等差数列,设其首项为a1,公差为d,则an+1=an+d
∴由已知可得:an+d=2an-n+1;
an+d=a1+(n-1)d  即an=n+d-1
又 an=a1+(n-1)d
∴a1=1,d=1   可得:an=n

1
anan+1
1
n(n+1)
1
n
?
1
n+1

∴Sn=(1?
1
2
)+(
1
2
?
1
3
)+…+(
1
n
?
1
n+1
)=
n
n+1

(Ⅱ)证明:数列{an+2}是等比数列,
(a2+2)2=(a1+2)(a3+2)
即∴a1=2,a2=4,a3=7,a4=12
于是数列{an+2}的前4项为4,6,9,14,
它显然不是等比数列,
数列{an+2}不可能是等比数列.