在数列{an}中,a1=1,当n≥2时,满足an-an-1+2an?an-1=0.(Ⅰ)求证:数列{1an}是等差数列,并求数列{an

2025-01-20 04:46:50
推荐回答(1个)
回答1:

解答:(I)证明:∵当n≥2时,满足an-an-1+2an?an-1=0.

1
an
?
1
an?1
=2,
∴数列{
1
an
}是等差数列,首项为
1
a1
=1,公差d=2.
1
an
=1+2(n?1)
=2n-1.
(II)解:bn=
an
2n+1
=
1
(2n?1)(2n+1)
=
1
2
(
1
2n?1
?
1
2n+1
)

∴数列{bn}的前n项和为Tn=
1
2
[(1?
1
3
)+(
1
3
?
1
5
)
+…+(
1
2n?1
?
1
2n+1
)]

=
1
2
(1?
1
2n+1
)

=
n
2n+1

∴2Tn(2n+1)≤m(n2+3)化为2n≤m(n2+3),化为m≥
2n
n2+3

令f(n)=
2n
n2+3
=
2
n+
3
n

函数g(x)=x+
3
x
(x>0),g′(x)=1?
3
x2
=
x2?3
x2

令g′(x)>0,解得x>
3
,此时函数g(x)单调递增;令g′(x)<0,解得0<x<
3
,此时函数g(x)单调递减.
∴当x=
3
时,函数g(x)取得最小值.
∴当n=1,2时,f(n)单调递增;当n≥2时,f(n)单调递减.
∴当n=2时,f(n)取得最大值,∴m≥
4
7