解答:(I)证明:∵当n≥2时,满足an-an-1+2an?an-1=0.
∴
?1 an
=2,1 an?1
∴数列{
}是等差数列,首项为1 an
=1,公差d=2.1 a1
∴
=1+2(n?1)=2n-1.1 an
(II)解:bn=
=an 2n+1
=1 (2n?1)(2n+1)
(1 2
?1 2n?1
),1 2n+1
∴数列{bn}的前n项和为Tn=
[(1?1 2
)+(1 3
?1 3
)+…+(1 5
?1 2n?1
)]1 2n+1
=
(1?1 2
)1 2n+1
=
.n 2n+1
∴2Tn(2n+1)≤m(n2+3)化为2n≤m(n2+3),化为m≥
.2n
n2+3
令f(n)=
=2n
n2+3
,2 n+
3 n
函数g(x)=x+
(x>0),g′(x)=1?3 x
=3 x2
,
x2?3 x2
令g′(x)>0,解得x>
,此时函数g(x)单调递增;令g′(x)<0,解得0<x<
3
,此时函数g(x)单调递减.
3
∴当x=
时,函数g(x)取得最小值.
3
∴当n=1,2时,f(n)单调递增;当n≥2时,f(n)单调递减.
∴当n=2时,f(n)取得最大值,∴m≥
.4 7