2.5计算极限lim(x→0) (1-cos2x)⼀xsinx

2025-01-19 23:14:32
推荐回答(3个)
回答1:

先利用 x等价于sinx有

原式 = lim (1-cos2x)/x²
=lim 2sin2x / 2x (洛毕塔法则)
=lim 2x/x
=2

回答2:

lim(x→0) (1-cos2x)/xsinx
=lim(x→0) [2(sinx)^2]/xsinx
=lim(x→0) 2sinx/x
=2

回答3:

解:cos2x=1-2sin²x
(1-cos2x)/xsinx=[1-((1-2sin²x)]/xsinx
=2sin²x/xsinx
=2sinx/x
lim(x→0) (1-cos2x)/xsinx=lim(x→0) 2sinx/x=2