换元后分部积分法
令t=x²/θ
则dt=2x/θdx
原式=∫(0→+∞)(θt)·e^(-t)dt
=θ∫(0→+∞)t·e^(-t)dt
f(x) = (1/θ) x e^(-x^2/θ) dx
∫(-∞->∞) f(x) dx =1
E(X^2)
=∫(-∞->∞) x^2.f(x) dx
=∫(-∞->∞) (1/θ) x^3. e^(-x^2/θ) dx
=-(1/2)∫(-∞->∞) x^2. d e^(-x^2/θ)
=-(1/2) [x^2. e^(-x^2/θ) ]|(-∞->∞)+ ∫(-∞->∞) x. e^(-x^2/θ) dx
=∫(-∞->∞) x. e^(-x^2/θ) dx
=θ∫(-∞->∞) (1/θ) x. e^(-x^2/θ) dx
=θ∫(-∞->∞) f(x) dx
=θ