acosB-bcosA=(3/5)c
∴sinAcosB-sinBcosA=(3/5)sinC=(3/5)sin(A+B)=(3/5)(sinAcosB+cosAsinB)
∴(2/5)sinAcosB=(8/5)cosAsinB
∴(sinAcosB)/(cosAsinB)=(8/5)/(2/5)=4
∴tanAcotB=(sinA/cosA)/(cosB/sinB)=(sinAcosB)/(cosAsinB)=4
∴tanA=4/cotB=4tanB
(2)tan(A-B)
=3/(1/tanB+4tanB)
≤3/{2√[(1/tanB)×(4tanB)]}
=3/2√4
=3/当1/tanB=4tanB,即tanB=1/2时,最大值就是3/4.
解:
(1)
∵acosB-bcosA=(3/5)c
∴sinAcosB-sinBcosA=(3/5)sinC=(3/5)sin(A+B)=(3/5)(sinAcosB+cosAsinB)
∴(2/5)sinAcosB=(8/5)cosAsinB
∴(sinAcosB)/(cosAsinB)=(8/5)/(2/5)=4
∴tanAcotB=(sinA/cosA)/(cosB/sinB)=(sinAcosB)/(cosAsinB)=4
∴tanA=4/cotB=4tanB
(2)tan(A-B)
=(tanA-tanB)/(1+tanAtanB)
=(4tanB-tanB)/[1+4(tanB)^2]
=3tanB/[1+4(tanB)^2]
=3/(1/tanB+4tanB)
≤3/{2√[(1/tanB)×(4tanB)]}
=3/2√4
=3/4
当且仅当1/tanB=4tanB,即tanB=1/2时,等号成立,最大值就是3/4.
用余弦定理,可以求出c 再用正铉定理可求B A 根据三角形内角和可求出C