过程如图,要用到三角函数:
阴影面积=长方形面积+扇形面积-扇形面积
(4×2+4×4×3.14÷4)-4×4×3.14÷4
=8dm²
扩展资料:
有几种众所周知的简单形状的公式,如三角形,矩形和圆形。使用这些公式,可以通过将多边形分成三角形来找到任何多边形的面积。对于具有弯曲边界的形状,通常需要微积分来计算面积。事实上,确定飞机数字面积的问题是演算历史发展的主要动机。
对于诸如球体,锥体或圆柱体的实体形状,其边界面的面积被称为表面积,简单形状的表面区域的公式由古希腊人计算,但计算更复杂形状的表面积通常需要多变量微积分。
区域在现代数学中起着重要的作用。除了其在几何和微积分中的显着重要性,面积与线性代数中的决定因素的定义有关,是微分几何中表面的基本特性。
在分析中,使用Lebesgue测量来定义平面的子集的面积,尽管并不是每个子集都是可测量的。一般来说,高等数学领域被视为二维地区体积的特殊情况。
可以通过使用公理来定义区域,将其定义为某些平面图的集合与实数集合的函数。可以证明存在这样的函数。
参考资料来源:百度百科-面积
参考资料来源:百度百科-投影面积
阴影面积就是用长方形的面积
减去半圆的面积,
设长方形的长为a,宽为b,则阴影面积为
ab-1/2×pai×1/2a