已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2,n∈N*),若数列{an+1+λan}是等比数列,(Ⅰ)求实

2025-01-20 07:13:57
推荐回答(1个)
回答1:

解答:解(Ⅰ)∵{an+1+λan}为等比数列,

an+1an
anan?1
=
an+6an?1an
anan?1
=
(1+λ)an+6an?1
anan?1
=(1+λ)?
an+
6
1+λ
an?1
anan?1
应为常数,
λ=
6
1+λ
,解得λ=2或λ=-3;
(Ⅱ)当λ=2时,可得{an+1+2an}为首项是a2+2a1=15,公比为3的等比数列,
则an+1+2an=15?3n-1  ①,
当λ=-3时,{an+1-3an}为首项是a2-3a1=-10,公比为-2的等比数列,
∴an+1-3an=-10(-2)n-1  ②,
①-②得,an3n?(?2)n
(Ⅲ)由3nbn=n(3n-an)=n[3n-3n+(-2)n]=n(-2)n
∴bn=n(-
2
3
n
令Sn=|b1|+|b2|+…+|bn|=
2
3
+2(
2
3
2+3(
2
3
3+…+n(
2
3
n
2
3
Sn=(
2
3
2+2(
2
3
3+…+(n-1)(
2
3
n+n(
2
3
n+1
两式相减,得
1
3
Sn=
2
3
+(
2
3
2+(
2
3
3+…+(
2
3
n-n(
2
3
n+1=
2
3
[1?(
2
3
)n]
1?
2
3
-n(
2
3
n+1=2[1-(
2
3
n]-n(
2
3
n+1
∴Sn=6[1-(
2
3
n]-3n(
2
3
n+1<6,
要使得|b1|+|b2|+…+|bn|<m对于n∈N*恒成立,只须m≥6,
∴m的取值范围是[6,+∞).