求下列微分方程的通解:y′′+y′-2y=0(要过程)

2025-01-21 09:27:54
推荐回答(1个)
回答1:

做代换y=e^z,则lny=z,dy=de^z=e^zdz
ylnydx
(x-lny)dy
=(e^z)zdx
(x-z)e^zdz
=(e^z)[zdx
(x-z)dz]=0
若e^z=0,即y=0
zdx
(x-z)dz
=zdx
xdz-zdz
=d(zx)-(1/2)dz^2
=d[zx-z^2/2]=0

zx-z^2/2=c(c为任意常数)
即原方程通解为
xlny-(lny)^2/2=c(c为任意常数)