做代换y=e^z,则lny=z,dy=de^z=e^zdzylnydx(x-lny)dy=(e^z)zdx(x-z)e^zdz=(e^z)[zdx(x-z)dz]=0若e^z=0,即y=0zdx(x-z)dz=zdxxdz-zdz=d(zx)-(1/2)dz^2=d[zx-z^2/2]=0得zx-z^2/2=c(c为任意常数)即原方程通解为xlny-(lny)^2/2=c(c为任意常数)