由方程y=tan(x+y)两边直接对x求导,得y'=(1+y')sec2(x+y)∴两边继续对x求导,得y″=y″sec2(x+y)+2(1+y′)2sec2(x+y)tan(x+y)将y'=(1+y')sec2(x+y)代入,化简得y''=-2csc2(x+y)cot3(x+y).