若由方程y=tan(x+y)所确定的隐函数为y=y(x),求y✀✀(x)

是二阶导数y✀✀(x),多谢各位了
2025-01-20 21:54:42
推荐回答(4个)
回答1:

一阶导数是:2/[cos(2x+2y)-1]
二阶导数是:4sin(2x+2y)[cos(2x+2y)+1]/[cos(2x+2y)-1]³
令: z=2/[cos(2x+2y)-1]
则:dz=2·(﹣1)·﹛1/[cos(2x+2y)-1]²﹜·[﹣sin(2x+2y)]·(2dx+2dy)
=4sin(2x+2y)(dx+dy)/[cos(2x+2y)-1]²
两边同时除以 dx 得:
dz/dx=4sin(2x+2y)(1+dy/dx)/[cos(2x+2y)-1]²
=﹛4sin(2x+2y)/[cos(2x+2y)-1]²﹜·(1+dy/dx)
=﹛4sin(2x+2y)/[cos(2x+2y)-1]²﹜·(1+z)
=4sin(2x+2y)[cos(2x+2y)+1]/[cos(2x+2y)-1]³

不正确请指出好吗?

回答2:

回答3:

y=tan(x+y)y'=sec²(x+y)*(x+y)'=sec²(x+y)*(1+y')=sec²(x+y)+y'sec²(x+y)y'-y'sec²(x+y)=sec²(x+y)y'=sec²(x+y)/[1-sec²(x+y)]=sec²(x+y)/{-[sec²(x+y)-1]}=sec²(x+y)/[-tan²(x+y)]=-1/cos²(x+y)*cos²(x+y)/sin²(x+y)=-csc²(x+y)y''=-2csc(x+y)*[-csc(x+y)cot(x+y)]*(x+y)'=2csc²(x+y)cot(x+y)*(1+y')=2csc²(x+y)cot(x+y)*[1-csc²(x+y)] =2csc²(x+y)cot(x+y)*{-1[csc²(x+y)-1]}=-2csc²(x+y)cot(x+y)*[cot²(x+y)]=-2csc²(x+y)cot³(x+y)

回答4:

其实不复杂,很好做。我没法让你看到解题过程,不能上图啊。自己看李永乐的复习全书,你这样考不上研究生的。好好复习,加油吧