由于特征方程为r2+2r+1=0,解得特征根为r=-1(2重)∴齐次方程的通解为y=(C1+C2x)e?x而f(x)=xe-x,λ=-1故有特解:y*=x2(ax+b)e-x,代入微分方程y″+2y′+y=xe-x,解得a= 1 6 ,b=0∴特解y*= 1 6 x3e?x∴通解为:y=(C1+C2x+ 1 6 x3)e?x