∑1⼀(n^2+n)敛散性

2024-11-08 14:16:59
推荐回答(5个)
回答1:

∑bai1/(n²+n) = ∑1/n(n+1) = ∑[1/n - 1/(n+1)]

部分和duSn=1 - 1/2 +1/2 -1/3 +1/3 - 1/4 +......+1/n - 1/(n+1)

=1 - 1/(n+1)

故级数zhi和

S=lim[n→∞dao]Sn=lim[n→∞][1 - 1/(n+1)]

=1-0=1

故级数收敛

扩展资料:

在实际的数学研究以及物理、天文等其它学科的应用中,经常会自然地涉及各种发散级数,所以数学家们便试图给这类发散级数客观地指派一个实或复的值,定义为相应级数的和,并在这种意义之下研究所涉及的发散级数。

每一种定义都被称为一个可和法,也被理解为一类级数到实数或复数的一个映射,通常也是一个线性泛函,例如阿贝尔可和法、切萨罗可和法与波莱尔可和法等。

可和法通常保持收敛级数的收敛值,而对某些发散级数,这种可和法和能额外定义出相应级数的和。例如切萨罗可和法将格兰迪级数。

回答2:

∑1/(n²+n) = ∑1/n(n+1) = ∑[1/n - 1/(n+1)]

部分和Sn=1 - 1/2 +1/2 -1/3 +1/3 - 1/4 +......+1/n - 1/(n+1)

=1 - 1/(n+1)

故级数和

S=lim[n→∞]Sn=lim[n→∞][1 - 1/(n+1)]

=1-0=1

故级数收敛

扩展资料:

分享一种解法。设un=1/[2n(3n+1)],vn=1/(6n²)。

lim(n→∞)un/vn=lim(n→∞)/(6n²)/[2n(3n+1)]=1。级数∑un与级数∑vn有相同的敛散性。

而,∑vn=(1/6)∑1/n,是p=2>1的p-级数,收敛。级数∑1/[2n(3n+1)]收敛。

回答3:

该级数收敛。详细过程如下:


以上,请采纳。

回答4:

∑1/(n²+n) = ∑1/n(n+1) = ∑[1/n - 1/(n+1)]
部分和Sn=1 - 1/2 +1/2 -1/3 +1/3 - 1/4 +......+1/n - 1/(n+1)
=1 - 1/(n+1)
故级数和
S=lim[n→∞]Sn=lim[n→∞][1 - 1/(n+1)]
=1-0=1
故级数收敛

回答5:

∑1/(n^2+n),由于1/(n^2+n)=1/n(n+1)<1/n^2
而∑1/n^2 收敛,则∑1/(n^2+n)收敛

是不是专升本的同学啊,我这个才是正确的答案哦