数学家人物有哪些人?

2025-01-20 16:27:15
推荐回答(2个)
回答1:

中国数学家 在中国,数学的起源也可追溯到远古。到西周时期(公元前11世纪~前八世纪),“数”作为贵族弟子必习的“六艺”(礼、乐、射、御、书、数)之一,已形成专门的学问,有些知识后成为中国最早的两部传世数学著作——《周捭算经》与《九章算术》的部分内容。 《周捭算经》同时也是一部天文著述,作者不详,成书年代据考当不晚于公元前2世纪。《周捭算经》在数学方面最主要的有勾股定理、分数运算及测量术等。 《周捭算经》本文没有给出勾股定理的证明,但《周捭算经》赵爽注中的“勾股圆方图”说,却蕴涵了迄今所知中国古代最早的勾股定理证明。赵爽,字君卿,生平不详,大约生活于后汉三国时期(公元三世纪前期)。“勾股圆方图”说短短五百余字,概括了整个汉代勾股算术的主要成就。 《九章算术》是中国古代最重要的数学经典,对中国古代数学的发展有深远影响。刘徽《九章算术注序》称《九章》是由周代“九数”发展而来,并由西汉张苍、耿寿昌等人删补。近年发现的湖北张家山汉初古墓竹简《算数书》(1984年出土),有些内容与《九章算术》类似。可以认为,《九章算术》是从先秦开始在长时期里经众多学者编纂、修改,约于西汉中叶(公元前一世纪)最后成书。 《九章算术》采用术文统率例题形式,全书共收246个数学问题,分成九章(①方田,②粟米,③衰分,④少广,⑤商功,⑥均输,⑦盈不足,⑧方程,⑨勾股)。《九章算术》所包含的数学成就是丰富的和多方面的,最著名的如分数运算法则、双设法(“盈不足”术)、开方法、线性方程组消元解法(“方程术”)及负数的引进(“正负术”)等,都具有世界意义。 《孙子算经》中国是世界上最早采用十进位值制记数的国家,春秋战国之际已普遍应用的筹算,即严格遵循了十进位值制。关于算筹记数法现在仅见的资料载于《孙子算经》。《孙子算经》三卷,作者名不详,成书年代约为公元4世纪,该书上卷是关于筹算法则的系统介绍,下卷则有著名的“物不知数”题,亦称“孙子问题”。 《张丘建算经》——百鸡术 《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。 贾宪:〈〈黄帝九章算经细草〉〉 中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。 贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。 秦九韶:〈〈数书九章〉〉 秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶:《测圆海镜》——开元术 随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。 李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”

回答2:

中国数学家 在中国,数学的起源也可追溯到远古。到西周时期(公元前11世纪~前八世纪),“数”作为贵族弟子必习的“六艺”(礼、乐、射、御、书、数)之一,已形成专门的学问,有些知识后成为中国最早的两部传世数学著作——《周捭算经》与《九章算术》的部分内容。 《周捭算经》同时也是一部天文著述,作者不详,成书年代据考当不晚于公元前2世纪。《周捭算经》在数学方面最主要的有勾股定理、分数运算及测量术等。 《周捭算经》本文没有给出勾股定理的证明,但《周捭算经》赵爽注中的“勾股圆方图”说,却蕴涵了迄今所知中国古代最早的勾股定理证明。赵爽,字君卿,生平不详,大约生活于后汉三国时期(公元三世纪前期)。“勾股圆方图”说短短五百余字,概括了整个汉代勾股算术的主要成就。 《九章算术》是中国古代最重要的数学经典,对中国古代数学的发展有深远影响。刘徽《九章算术注序》称《九章》是由周代“九数”发展而来,并由西汉张苍、耿寿昌等人删补。近年发现的湖北张家山汉初古墓竹简《算数书》(1984年出土),有些内容与《九章算术》类似。可以认为,《九章算术》是从先秦开始在长时期里经众多学者编纂、修改,约于西汉中叶(公元前一世纪)最后成书。 《九章算术》采用术文统率例题形式,全书共收246个数学问题,分成九章(①方田,②粟米,③衰分,④少广,⑤商功,⑥均输,⑦盈不足,⑧方程,⑨勾股)。《九章算术》所包含的数学成就是丰富的和多方面的,最著名的如分数运算法则、双设法(“盈不足”术)、开方法、线性方程组消元解法(“方程术”)及负数的引进(“正负术”)等,都具有世界意义。 《孙子算经》中国是世界上最早采用十进位值制记数的国家,春秋战国之际已普遍应用的筹算,即严格遵循了十进位值制。关于算筹记数法现在仅见的资料载于《孙子算经》。《孙子算经》三卷,作者名不详,成书年代约为公元4世纪,该书上卷是关于筹算法则的系统介绍,下卷则有著名的“物不知数”题,亦称“孙子问题”。 《张丘建算经》——百鸡术 《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。 贾宪:〈〈黄帝九章算经细草〉〉 中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。 贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。 秦九韶:〈〈数书九章〉〉 秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶:《测圆海镜》——开元术 随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。 李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术” 查看原帖>>