求极限lim[x→0] [根号(1+ x )+根号(1-x )-2]⼀x^2

2025-01-19 08:25:34
推荐回答(2个)
回答1:

lim(x→0) [√(1+x)+√(1-x)-2]/x²

=lim(x→0) [(1/2)(1+x)^(-1/2)-(1/2)(1-x)^(-1/2)]/(2x)

=lim(x→0) [(-1/4)(1+x)^(-3/2)-(1/4)(1-x)^(-3/2)]/2

=(-1/2)/2

=-1/4

完善

极限思想的完善,与微积分的严格化的密切联系。在很长一段时间里,微积分理论基础的问题,许多人都曾尝试“彻底满意”地解决,但都未能如愿以偿。这是因为数学的研究对象已从常量扩展到变量,而人们习惯于用不变化的常量去思维,分析问题。

对“变量”特有的概念理解还不十分清楚;对“变量数学”和“常量数学”的区别和联系还缺乏了解;对“有限”和“无限”的对立统一关系还不明确。这样,人们使用习惯的处理常量数学的传统思想方法,思想僵化,就不能适应‘变量数学’的新发展。

回答2:

方法一: L'Hospital法则
lim(x→0) [√(1+x)+√(1-x)-2]/x²
=lim(x→0) [(1/2)(1+x)^(-1/2)-(1/2)(1-x)^(-1/2)]/(2x)
=lim(x→0) [(-1/4)(1+x)^(-3/2)-(1/4)(1-x)^(-3/2)]/2
=(-1/2)/2
=-1/4

方法二: 泰勒展开
利用泰勒展开式f(x)=f(x0)+f'(x0)(x-x0)+[f''(x0)/2!](x-x0)²+···+ [f(x0)^(n)/n!]*(x-x0)^n+Rn(x)
√(1+x)=1+(1/2)x-(1/8)x²+o(x²)
√(1-x)=1-(1/2)x-(1/8)x²+o(x²)
∴√(1+x)+√(1+x)-2=1+(1/2)x-(1/8)x²+o(x²)+1-(1/2)x-(1/8)x²+o(x²)-2=(-1/4)x²+o(x²)
∴lim(x→0) [√(1+x)+√(1-x)-2]/x²
=lim(x→0) [(-1/4)x²+o(x²)]/x²
=-1/4

方法三:
lim(x→0) [√(1+x)+√(1-x)-2]/x²
= lim(x→0) [(√(1+x)-1)-(1-√(1-x))]/x²
= lim(x→0) [x/(√(1+x)+1)-x/(1+√(1-x))]/x²
= lim(x→0) [1/(√(1+x)+1)-1/(1+√(1-x))]/x
= lim(x→0) [ (√(1-x)-√(1+x)) / [(√(1+x)+1)(1+√(1-x))] ]/x
= lim(x→0) [ ((1-x)-(1+x)) / (√(1-x)+√(1+x)) / [(√(1+x)+1)(1+√(1-x))] ]/x
= lim(x→0) [ -2 / (√(1-x)+√(1+x)) / [(√(1+x)+1)(1+√(1-x))] ]
= -2 / (1+1) / [(1+1)(1+1)] ]
=-1/4