//经典牛顿迭代法C++实现
#include
#include
#define N 2 // 非线性方程组中方程个数、未知量个数
#define Epsilon 0.0001 // 差向量1范数的上限
#define Max 100 //最大迭代次数
using namespace std;
const int N2=2*N;
int main()
{
void ff(float xx[N],float yy[N]); //计算向量函数的因变量向量yy[N]
void ffjacobian(float xx[N],float yy[N][N]); //计算雅克比矩阵yy[N][N]
void inv_jacobian(float yy[N][N],float inv[N][N]); //计算雅克比矩阵的逆矩阵inv
void newdundiedai(float x0[N], float inv[N][N],float y0[N],float x1[N]); //由近似解向量 x0 计算近似解向量 x1
float x0[N]={2.0,0.25},y0[N],jacobian[N][N],invjacobian[N][N],x1[N],errornorm;
int i,j,iter=0;
//如果取消对x0的初始化,撤销下面两行的注释符,就可以由键盘向x0读入初始近似解向量
//for( i=0;i
cout<<"初始近似解向量:"<
{
iter=iter+1;
cout<<"第 "<
//计算向量函数的因变量向量 y0
ff(x0,y0);
//计算雅克比矩阵 jacobian
ffjacobian(x0,jacobian);
//计算雅克比矩阵的逆矩阵 invjacobian
inv_jacobian(jacobian,invjacobian);
//由近似解向量 x0 计算近似解向量 x1
newdundiedai(x0, invjacobian,y0,x1);
//计算差向量的1范数errornorm
errornorm=0;
for (i=0;i
if (errornorm
for (i=0;i
} while (iter
return 0;
}
void ff(float xx[N],float yy[N])
{float x,y;
int i;
x=xx[0];
y=xx[1];
yy[0]=x*x-2*x-y+0.5;
yy[1]=x*x+4*y*y-4;
cout<<"向量函数的因变量向量是: "<
}
void ffjacobian(float xx[N],float yy[N][N])
{
float x,y;
int i,j;
x=xx[0];
y=xx[1];
//jacobian have n*n element
yy[0][0]=2*x-2;
yy[0][1]=-1;
yy[1][0]=2*x;
yy[1][1]=8*y;
cout<<"雅克比矩阵是: "<
cout<
void inv_jacobian(float yy[N][N],float inv[N][N])
{float aug[N][N2],L;
int i,j,k;
cout<<"开始计算雅克比矩阵的逆矩阵 :"<
for(j=N;j
else aug[i][j]=0;
}
for (i=0;i
cout<
for (i=0;i
for (k=i+1;k
for(j=i;j
}
}
for (i=0;i
cout<
for (i=N-1;i>0;i--)
{
for (k=i-1;k>=
0;k--)
{L=-aug[k][i]/aug[i][i];
for(j=N2-1;j>=0;j--)
aug[k][j]=aug[k][j]+L*aug[i][j];
}
}
for (i=0;i
cout<
for (i=N-1;i>=0;i--)
for(j=N2-1;j>=0;j--)
aug[i][j]=aug[i][j]/aug[i][i];
for (i=0;i
}
cout<
cout<<"雅克比矩阵的逆矩阵: "<
cout<
}
void newdundiedai(float x0[N], float inv[N][N],float y0[N],float x1[N])
{
int i,j;
float sum=0;
for(i=0;i
for(j=0;j
x1[i]=x0[i]-sum;
}
cout<<"近似解向量:"<