求极限lim(x→0)[∫(0.x)sintdt+lncosx]⼀x∧4

2025-01-20 07:07:55
推荐回答(1个)
回答1:

lim→0[∫(上限x,下限0)ln(1+sint)dt]/1-cosx
用罗必塔法则
上下求导可知(分子为变上限积分的求导)
=
lim→0[ln(1+sinx)]/sinx
由等价无穷小
ln(1+sinx)
=
sinx
=
lim→0
(sinx)/sinx
=1