大学高数 隐函数的求导,要详细过程,谢谢

2025-01-19 17:08:16
推荐回答(3个)
回答1:

  对方程两端求微分,得
   [e^(xy)](ydx+xdy)-(yzdx+xzdy+xydz) = 0,
整理,得
   dz = {y[e^(xy)]-yz}dx+ {x[e^(xy)]-xz}dy/(xy)
    = {{[e^(xy)]-z}/x}dx+ {{[e^(xy)]-z}/y}dy,
所以,
   ∂z/∂x = {[e^(xy)]-z}/x,∂z/∂y = {[e^(xy)]-z}/y;
于是,
   ∂²z/∂x∂y = (∂/∂x)(∂z/∂y) = (∂/∂x){{[e^(xy)]-z}/y}
       = {[e^(xy)]*y-(∂z/∂x)}/y²
       = {[e^(xy)]*y-{[e^(xy)]-z}/x}/y²
       = ……。

回答2:

回答3:

我还没学