(Ⅰ)设a,b均为正数,且a≠b,求证:a3+b3>a2b+ab2.(Ⅱ)已知a,b,c∈R+求证:a2+b2+c23≥a+b+c3

2024-11-08 23:32:28
推荐回答(1个)
回答1:

解答:证明:(Ⅰ)a3+b3-a2b-ab2=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)=(a-b)(a2-b2)=(a-b)2(a+b);
∵a>0,b>0,a≠b,∴(a-b)2(a+b)>0,即a3+b3-a2b-ab2>0;
∴a3+b3>a2b+ab2
(Ⅱ)∵

a2+b2+c2
3
?(
a+b+c
3
)2=
a2+b2+c2
3
?
a2+b2+c2+2ab+2bc+2ac
9
=
2a2+2b2+2c2?2ab?2bc?2ac
9
=
a2?2ab+b2+b2?2bc+c2+a2?2ac+c2
9
=
(a?b)2+(b?c)2+(a?c)2
9
,∵(a-b)2≥0,(b-c)2≥0,(a-c)2≥0,∴
(a?b)2+(b?c)2+(a?c)2
9
≥0

即:
a2+b2+c2
3
≥(
a+b+c
3
)2
,∵a,b,c∈R+
a2+b2+c2
3
a+b+c
3